Home
Class 12
MATHS
If a sectheta = 1 -b tan theta and a^2 s...

If a `sectheta = 1 -b tan theta and a^2 sec^2 theta = 5 + b^2 tan^2 theta,` then (i) `a^2b^2-4a^2=9b^2` (ii) `a^2b^2+4a^2=9b^2` (iii) `a^2b^2+9b^2=4a^2` (iv) `a^2b^2+9b^2=5a^2`

A

`a ^(2) b ^(2) - 4a ^(2) = 9b ^(2)`

B

`a^(2) b^(2) + 4a ^(2)= 9b ^(2)`

C

`a ^(2)b ^(2) + 9b ^(2)= 4a^(2)`

D

`4a ^(2) b ^(2) + 9b ^(2) = 5a ^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we start with the equations provided: 1. \( a \sec \theta = 1 - b \tan \theta \) 2. \( a^2 \sec^2 \theta = 5 + b^2 \tan^2 \theta \) ### Step 1: Rewrite the first equation From the first equation, we can express \( \sec \theta \) in terms of \( \tan \theta \): \[ \sec \theta = \frac{1 - b \tan \theta}{a} \] ### Step 2: Square both sides of the first equation Now, we square both sides to find \( \sec^2 \theta \): \[ \sec^2 \theta = \left(\frac{1 - b \tan \theta}{a}\right)^2 = \frac{(1 - b \tan \theta)^2}{a^2} \] Expanding the right side: \[ \sec^2 \theta = \frac{1 - 2b \tan \theta + b^2 \tan^2 \theta}{a^2} \] ### Step 3: Substitute into the second equation Now, substitute \( \sec^2 \theta \) into the second equation: \[ a^2 \left(\frac{1 - 2b \tan \theta + b^2 \tan^2 \theta}{a^2}\right) = 5 + b^2 \tan^2 \theta \] This simplifies to: \[ 1 - 2b \tan \theta + b^2 \tan^2 \theta = 5 + b^2 \tan^2 \theta \] ### Step 4: Rearrange the equation Subtract \( b^2 \tan^2 \theta \) from both sides: \[ 1 - 2b \tan \theta = 5 \] ### Step 5: Solve for \( \tan \theta \) Rearranging gives: \[ -2b \tan \theta = 4 \] \[ \tan \theta = -\frac{2}{b} \] ### Step 6: Substitute \( \tan \theta \) back into \( \sec \theta \) Now substitute \( \tan \theta \) back into the expression for \( \sec \theta \): \[ \sec \theta = \frac{1 - b \left(-\frac{2}{b}\right)}{a} = \frac{1 + 2}{a} = \frac{3}{a} \] ### Step 7: Use the identity \( \sec^2 \theta - \tan^2 \theta = 1 \) Using the identity \( \sec^2 \theta - \tan^2 \theta = 1 \): \[ \left(\frac{3}{a}\right)^2 - \left(-\frac{2}{b}\right)^2 = 1 \] \[ \frac{9}{a^2} - \frac{4}{b^2} = 1 \] ### Step 8: Rearranging the equation Multiply through by \( a^2 b^2 \) to eliminate the denominators: \[ 9b^2 - 4a^2 = a^2 b^2 \] ### Step 9: Rearranging to find the final equation Rearranging gives: \[ a^2 b^2 - 4a^2 = 9b^2 \] ### Conclusion Thus, we have derived the equation: \[ a^2 b^2 - 4a^2 = 9b^2 \] This corresponds to option (i).
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan theta = b/a, then find the value of a cos 2theta + b sin 2theta .

If tan theta=a/b then b cos 2theta+asin 2theta=

If (a+b)^2/(4ab)=sin^2theta , then

If tan^(2)theta, sec^(2)theta are the roots of ax^(2)+bx+c=0 then b^(2)- a^(2) =

Minimum value of a^2cos e c^2theta+b^2sec^2theta is (where a b >0 )

Show that: |b^2+c^2a b a c b a c^2+a^2b c c a c b a^2+b^2|=4a^2b^2c^2

Prove: tan^2Asec^2B-sec^2Atan^2B=tan^2A-tan^2B

If costheta=2/3 , then 2sec^2theta+2tan^2theta-7 is equal to (a) 1 (b) 0 (c) 3 (d) 4

If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m^(2) - n^(2) = a^(2) - b^(2)

Show that: |b^2+c^2a b a c b a c^2+a^2b cc a c b a^2+b^2|=4a^2\ b^2\ c^2 .