Home
Class 12
MATHS
If t a nalpha=1/(sqrt(x(x^2+x+1))),tanbe...

If `t a nalpha=1/(sqrt(x(x^2+x+1))),tanbeta=(sqrt(x))/(sqrt(x^2+x+1))a n dtangamma=sqrt(x^(-3)+x^(-2)+x^(-1)),\ p rov e\ t h a t\ alpha+beta=gammadot`

A

`alpha + beta = 2 gamma `

B

`alpha +beta = 3 gamma `

C

`alpha + beta = gamma`

D

`2 (alpha + beta) = gamma `

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

if tanalpha=1/(sqrt(x(x^2+x+1))), tanbeta=(sqrtx)/(sqrt(x^2+x+1) and tangamma=sqrt(x^-3+x^-2+x^-1) then alpha+beta=

tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))

y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))

If y=sqrt(x)+1/(sqrt(x)) , prove that 2x(dy)/(dx)=sqrt(x)-1/(sqrt(x))

If y=sqrt(x)+1/(sqrt(x)),p rov et h a t2x(dy)/(dx)=sqrt(x)-1/(sqrt(x))

(1) Evaluate: int(1+x+sqrt(x+x^(2)))/(sqrt(x)+sqrt(1+x))*dx=

If tan^(-1){(sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))}=alpha, then prove that x^2=sin2alpha

If tan^(-1){(sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))}=alpha, then prove that x^2=sin2alpha

If tan^(-1). (sqrt((1+x^(2))) - sqrt((1-x^(2))))/(sqrt((1+x^(2)))+sqrt((1-x^(2))))=alpha" , then " x^(2) is

int(e^x[1+sqrt(1-x^2)sin^-1x])/sqrt(1-x^2)dx