Home
Class 12
MATHS
If n=2m+1,m in N uu {0}, then int0^(pi/2...

If `n=2m+1,m in N uu {0},` then `int_0^(pi/2)(sin nx)/(sin x) dx` is equal to (i) `pi` (ii) `pi/2` (iii) `pi/4` (iv) none of these

A

`pi`

B

`pi//2`

C

`pi//4`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{\frac{\pi}{2}} \frac{\sin(nx)}{\sin(x)} \, dx \) where \( n = 2m + 1 \) and \( m \in \mathbb{N} \cup \{0\} \), we can follow these steps: ### Step 1: Substitute \( n \) Given \( n = 2m + 1 \), we can start with the simplest case, \( m = 0 \), which gives \( n = 1 \). ### Step 2: Calculate the integral for \( n = 1 \) Substituting \( n = 1 \): \[ I = \int_0^{\frac{\pi}{2}} \frac{\sin(x)}{\sin(x)} \, dx = \int_0^{\frac{\pi}{2}} 1 \, dx \] Calculating this integral: \[ I = \left[ x \right]_0^{\frac{\pi}{2}} = \frac{\pi}{2} - 0 = \frac{\pi}{2} \] ### Step 3: Check for \( n = 3 \) Now, let's check for \( n = 3 \) (when \( m = 1 \)): \[ I = \int_0^{\frac{\pi}{2}} \frac{\sin(3x)}{\sin(x)} \, dx \] Using the identity \( \sin(3x) = 3\sin(x) - 4\sin^3(x) \): \[ I = \int_0^{\frac{\pi}{2}} \frac{3\sin(x) - 4\sin^3(x)}{\sin(x)} \, dx = \int_0^{\frac{\pi}{2}} (3 - 4\sin^2(x)) \, dx \] ### Step 4: Simplify the integral Now, we can separate the integral: \[ I = \int_0^{\frac{\pi}{2}} 3 \, dx - 4 \int_0^{\frac{\pi}{2}} \sin^2(x) \, dx \] Calculating the first part: \[ \int_0^{\frac{\pi}{2}} 3 \, dx = 3 \cdot \frac{\pi}{2} = \frac{3\pi}{2} \] ### Step 5: Calculate \( \int_0^{\frac{\pi}{2}} \sin^2(x) \, dx \) Using the identity \( \sin^2(x) = \frac{1 - \cos(2x)}{2} \): \[ \int_0^{\frac{\pi}{2}} \sin^2(x) \, dx = \int_0^{\frac{\pi}{2}} \frac{1 - \cos(2x)}{2} \, dx = \frac{1}{2} \left[ x - \frac{\sin(2x)}{2} \right]_0^{\frac{\pi}{2}} = \frac{1}{2} \left[ \frac{\pi}{2} - 0 \right] = \frac{\pi}{4} \] ### Step 6: Substitute back into the integral Now substituting back: \[ I = \frac{3\pi}{2} - 4 \cdot \frac{\pi}{4} = \frac{3\pi}{2} - \pi = \frac{\pi}{2} \] ### Conclusion We have shown that for both \( n = 1 \) and \( n = 3 \), the integral evaluates to \( \frac{\pi}{2} \). By similar reasoning, this will hold for any odd integer \( n \) of the form \( 2m + 1 \). Thus, the final answer is: \[ \boxed{\frac{\pi}{2}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(-pi //2)^(pi//2) sin |x|dx is equal to

int_(0)^(pi)(x.sin^(2)x.cosx)dx is equal to

If I_n = int_0^(pi/2) (sin^2 nx)/(sin^2 x) dx , then

For any n in N, int_(0)^(pi) (sin (2n+1)x)/(sinx)dx is equal to

int_(0)^(pi//2) sin^(4)xcos^(3)dx is equal to :

For any n in N, int_(0)^(pi) (sin^(2)nx)/(sin^(2)x)dx is equal to

int_(0)^(1//2) |sin pi x|dx is equal to

int_0^(pi/2)sin4xcotx dx is equal to -pi/2 (2) 0 (3) pi/2 (4) pi

If A=int_0^pi cosx/(x+2)^2 \ dx , then int_0^(pi//2) (sin 2x)/(x+1) \ dx is equal to

int_0^oo(x dx)/((1+x)(1+x^2)) is equal to (A) pi/4 (B) pi/2 (C) pi (D) none of these"