Home
Class 12
MATHS
The solution set of inequality (tan^(-...

The solution set of inequality
`(tan^(-1)x)(cot^(-1)x)-(tan^(-1)x)(1+(pi)/(2))-2cot^(-1)x+2(1+(pi)/(2))gtlim_(yrarr-oo)[sec^(-1)y-(pi)/(2)]` is (where [ . ]denotes the G.I.F.)

A

`(tan 1, tan 2)`

B

`(-cot 1, cot2)`

C

`(-tan1, tan2)`

D

`(-tan 1,oo)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The solution set of the inequality tan^(-1)x+sin^(-1)x ge (pi)/(2) is

The solution set of inequality ( cot^(-1) x) (tan^(-1) x) + (2 - pi/2) cot^(-1) x - 3 tan^(-1) x - 3 ( 2 - pi/2) gt 0 , is

tan^(- 1) (1/(x+y)) +tan^(- 1) (y/(x^2+x y+1)) =cot^(- 1)x

Number of solutions of equation tan^(-1)(e^(-x))+cot^(-1)(|lnx|)=pi//2 is:

Solve: 5tan^(-1)x+3cot^(-1)x=2pi

The solution set of inequality (cot^(-1)x)(tan^(-1)x)+(2-pi/2)cot^(-1)x-3tan^(-1)x-3(2-pi/2)>0 is (a , b), then the value of cot^(-1)a+cot^(-1)b is____

Solve : tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=pi/4

If tan^(-1)x+2cot^(-1)x=(2pi)/(3) then x =

Solution(s) of the equation sin(-pi/3+tan^(-1)x+cot^(-1)x)=1/2 is/are

Find the value of tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4