Home
Class 12
MATHS
If tan^(-1) x + tan^(-1) y + tan ^(-1) z...

If `tan^(-1) x + tan^(-1) y + tan ^(-1) z = (pi)/(2)` , then value of xy + yz + zx a) -1 b) 1 c) 0 d) None of these

A

0

B

`1//2`

C

`1//3`

D

1

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1) x + tan^(-1)y + tan^(-1)z= pi then x + y + z is equal to

If tan^(-1) x+tan^(-1)y+tan^(-1)z=pi/2 then prove that yz+zx+xy=1

If tan^(-1)x+tan^(-1)y=pi/4, then write the value of x+y+x ydot

If tan^(-1)x+tan^(-1)y=pi/4, then write the value of x+y+x ydot

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi , then 1/(xy)+1/(yz)+1/(zx)=

If xy +yz+zx=1 then tan^(-1)x+tan^(-1)y+tan^(-1)z =

If tan^(- 1)x+tan^(- 1)y+tan^(- 1)z=pi prove that x+y+z=xyz

If tan^(- 1)x+tan^(- 1)y+tan^(- 1)z=pi prove that x+y+z=xyz

If tan^(-1) a+tan^(-1) b +tan^(-1)c=pi , prove that a+b+c=abc.

If tan^(-1) ((x+1)/(x-1))+tan^(-1)((x-1)/x)=tan^(-1)(-7) , then the value of x is (a) 0 (b) -2 (c) 1 (d) 2