Home
Class 12
MATHS
If xy + yz + zx = 1 then sum (x + y)/(1 ...

If `xy + yz + zx = 1` then `sum (x + y)/(1 - xy)=`

A

`(4)/(xyz)`

B

`(1)/(xyz)`

C

xyz

D

`x+ y+ z`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \(\sum \frac{x+y}{1-xy}\) given that \(xy + yz + zx = 1\). ### Step-by-Step Solution: 1. **Start with the given equation**: We have \(xy + yz + zx = 1\). 2. **Rewrite the expression**: We want to evaluate \(\sum \frac{x+y}{1-xy}\). We can express this as: \[ \sum \frac{x+y}{1-xy} = \sum \frac{x+y}{(xy + yz + zx) - xy} \] Substituting \(xy + yz + zx = 1\) into the equation gives: \[ \sum \frac{x+y}{1 - xy} = \sum \frac{x+y}{1 - xy} \] 3. **Simplify the denominator**: The denominator can be rewritten as: \[ 1 - xy = yz + zx \] Thus, we have: \[ \sum \frac{x+y}{1 - xy} = \sum \frac{x+y}{yz + zx} \] 4. **Break down the sum**: The expression can be separated into three parts: \[ \frac{x+y}{yz+zx} + \frac{y+z}{zx+xy} + \frac{z+x}{xy+yz} \] 5. **Factor out common terms**: Notice that each term can be manipulated: \[ \frac{x+y}{yz+zx} = \frac{x+y}{z(y+x)} \] This leads to: \[ = \frac{1}{z} \quad \text{(for each term)} \] 6. **Sum up the fractions**: Therefore, we can write: \[ \sum \frac{x+y}{1 - xy} = \frac{1}{z} + \frac{1}{x} + \frac{1}{y} \] 7. **Combine the fractions**: The final step is to combine these fractions: \[ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{xy + xz + yz}{xyz} \] Since \(xy + yz + zx = 1\), we can substitute this in: \[ = \frac{1}{xyz} \] 8. **Final result**: Therefore, the value of the expression \(\sum \frac{x+y}{1-xy}\) is: \[ \frac{1}{xyz} \] ### Conclusion: The final answer is \(\frac{1}{xyz}\).
Promotional Banner

Similar Questions

Explore conceptually related problems

If yz - zx = 3 and zx - xy = 4, then xy - yz =

If 1//x + 1//y = 1//3 ,then (xy)/(x + y) =

If ynez , then (xy-zx)/(z-y)=

If x , y ,and z are positive , with xy = 24 , xz = 48 , and yz = 72 , then x + y + z =

Find the sum of the following algebraic expressions : 4xy - 3yz + 2zx , 2xy - yz - zx , - xy + 5yz + 6zx

If xy +yz+zx=1 then tan^(-1)x+tan^(-1)y+tan^(-1)z =

If x ,y,z are in A.P. show that (xy)^(-1) , (zx)^(-1) , (yz)^(-1) are also in A.P.

If x^(3) + y^(3) + z^(3) = 3xyz and x + y + z = 0 , find the value of : ((x+y)^(2))/(xy) + ((y+z)^(2))/(yz) + ((z+x)^(2))/(zx)

If the real numbers x, y, z are such that x^2 + 4y^2 + 16z^2 = 48 and xy + 4yz + 2zx = 24 . what is the value of x^(2) +y^(2) z^(2) =?