Home
Class 12
MATHS
If sin ^(-1)((1 - x ^(2))/(1 + x ^(2)))+...

If `sin ^(-1)((1 - x ^(2))/(1 + x ^(2)))+ cos ^(-1) ((2x )/(1 +x ^(2)))= pi/3,` then the vlaue of x is equal to

A

`1 //sqrt2`

B

`1 //sqrt3`

C

`sqrt2`

D

`sqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \sin^{-1}\left(\frac{1 - x^2}{1 + x^2}\right) + \cos^{-1}\left(\frac{2x}{1 + x^2}\right) = \frac{\pi}{3}, \] we can follow these steps: ### Step 1: Use the identity for sine and cosine We know that if we let \( x = \tan\left(\frac{y}{2}\right) \), then we can express sine and cosine in terms of \( y \): - \(\sin y = \frac{2\tan\left(\frac{y}{2}\right)}{1 + \tan^2\left(\frac{y}{2}\right)} = \frac{2x}{1 + x^2}\) - \(\cos y = \frac{1 - \tan^2\left(\frac{y}{2}\right)}{1 + \tan^2\left(\frac{y}{2}\right)} = \frac{1 - x^2}{1 + x^2}\) ### Step 2: Rewrite the equation Substituting these into the original equation gives us: \[ \sin^{-1}\left(\cos y\right) + \cos^{-1}\left(\sin y\right) = \frac{\pi}{3}. \] ### Step 3: Simplify using inverse identities Using the identity \(\sin^{-1}(a) + \cos^{-1}(a) = \frac{\pi}{2}\), we can rewrite the equation as: \[ \frac{\pi}{2} - y + \frac{\pi}{2} - y = \frac{\pi}{3}. \] ### Step 4: Combine terms This simplifies to: \[ \pi - 2y = \frac{\pi}{3}. \] ### Step 5: Solve for \(y\) Rearranging gives: \[ 2y = \pi - \frac{\pi}{3} = \frac{3\pi}{3} - \frac{\pi}{3} = \frac{2\pi}{3}. \] Dividing by 2, we find: \[ y = \frac{\pi}{3}. \] ### Step 6: Find \(x\) Recall that \(x = \tan\left(\frac{y}{2}\right)\): \[ x = \tan\left(\frac{\pi}{6}\right). \] ### Step 7: Calculate \(\tan\left(\frac{\pi}{6}\right)\) We know that: \[ \tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}. \] Thus, the value of \(x\) is: \[ x = \frac{1}{\sqrt{3}}. \] ### Final Answer The value of \(x\) is \[ \boxed{\frac{1}{\sqrt{3}}}. \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1)((5)/(x))+sin^(-1)((12)/(x))=sin^(-1)((2)/(x))+cos^(-1)((2)/(x)) then the value of x is equal to

Let f(x)=sin^(-1)((2x)/(1+x^(2))) and g(x)=cos^(-1)((x^(2)-1)/(x^(2)+1)) . Then tha value of f(10)-g(100) is equal to

If sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))=4 tan^(-1) x then

If cos^(-1)((1-x^(2))/(1+x^(2)))+sin^(-1)((2x)/(1+x^(2)))=p for all x in[-1,0] , then p is equal to

If 3sin^(-1)((2x)/(1+x^2))-4cos^(-1)((1-x^2)/(1+x^2))+2tan^(-1)((2x)/(1-x^2))=pi/3, then x is equal to

Suppose 3 sin ^(-1) ( log _(2) x ) + cos^(-1) ( log _(2) y) =pi //2 " and " sin^(-1) ( log _(2) x ) + 2 cos^(-1) ( log_(2) y) = 11 pi//6 , then the value of x^(-2) + y^(-2) equals

If -1lexle0 then sin{tan^(-1)((1-x^(2))/(2x))-cos^(-1)((1-x^(2))/(1+x^(2)))} is equal to

Suppose 3 sin^(-1) ( log _(2) x) + cos^(-1) ( log _(2) y) =pi //2 and sin^(-1) ( log _(2) x ) + 2 cos^(-1) ( log_(2) y) = 11 pi //6 . then the value of 1/x^(-2) + 1/y^(-2) equals .

If (sin^(-1) x)^2 + (cos^(-1)x)^2 =(5pi^2)/8 then one of the values of x is

If sin^(- 1)(x)+sin^(- 1)(2x)=pi/3 then x=