Home
Class 12
MATHS
The feet of the normals to (x^(2))/(a^(2...

The feet of the normals to `(x^(2))/(a^(2)) -(y^(2))/(b^(2)) =1` from `(h,k)` lie on

A

`a ^(2) ky - b ^(2) hx = xy (a ^(2) - b ^(2))

B

`a ^(2) ky + b ^(2) hx = xy (a ^(2) + b ^(2))`

C

`a ^(2) hy - b ^(2) ky = xy (a ^(2) - b ^(2))

D

`a^(2) hy + b ^(2) kx = xy (a ^(2) + b ^(2))`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of normals to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 from an external point, is

If the l x+ my=1 is a normal to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , then shown that (a^(2))/(l^(2))-(b^(2))/(m^(2))=(a^(2)+b^(2))^(2)

Find the equation of the normal to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 at the positive end of the latus rectum.

Find the locus of the foot of perpendicular from the centre upon any normal to line hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 .

If the tangent at point P(h, k) on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 cuts the circle x^(2)+y^(2)=a^(2) at points Q(x_(1),y_(1)) and R(x_(2),y_(2)) , then the value of (1)/(y_(1))+(1)/(y_(2)) is

The line lx+my=n is a normal to the ellipse x^(2)/a^(2)+y^(2)/b^(2)=1

Find the equation of the normal to the curve x^2/a^2-y^2/b^2=1 at (x_0,y_0)

Find the equations of tangent and normal to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 at (x_1,y_1)

Find the equations of tangent and normal to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 at (x_1,y_1)

The locus of the poles of normal chords of the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 , is