Home
Class 12
MATHS
sum (k =1) ^(89) log (e) tan ((pik)/(180...

`sum _(k =1) ^(89) log _(e) tan ((pik)/(180)) ` is equal to

A

zero

B

1

C

`log_(e) (89)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sum_{k=1}^{89} \log_e \tan\left(\frac{\pi k}{180}\right) \), we can follow these steps: ### Step 1: Define the Summation Let: \[ y = \sum_{k=1}^{89} \log_e \tan\left(\frac{\pi k}{180}\right) \] ### Step 2: Use Properties of Logarithms We can use the property of logarithms that states \( \log(a) + \log(b) = \log(ab) \). Thus, we can rewrite \( y \) as: \[ y = \log_e \left( \tan\left(\frac{\pi}{180}\right) \cdot \tan\left(\frac{2\pi}{180}\right) \cdots \tan\left(\frac{89\pi}{180}\right) \right) \] ### Step 3: Pairing the Terms Notice that \( \tan\left(\frac{(90-k)\pi}{180}\right) = \cot\left(\frac{k\pi}{180}\right) \). Therefore, we can pair the terms: - For \( k = 1 \), we have \( \tan\left(\frac{\pi}{180}\right) \) and \( \tan\left(\frac{89\pi}{180}\right) = \cot\left(\frac{\pi}{180}\right) \). - For \( k = 2 \), we have \( \tan\left(\frac{2\pi}{180}\right) \) and \( \tan\left(\frac{88\pi}{180}\right) = \cot\left(\frac{2\pi}{180}\right) \). - This continues up to \( k = 44 \) and \( k = 45 \). ### Step 4: Simplifying the Product Each pair \( \tan\left(\frac{k\pi}{180}\right) \cdot \cot\left(\frac{k\pi}{180}\right) = 1 \). Therefore, we can write: \[ y = \log_e \left( \prod_{k=1}^{44} 1 \cdot \tan\left(\frac{45\pi}{180}\right) \right) \] Since \( \tan\left(\frac{45\pi}{180}\right) = 1 \), we have: \[ y = \log_e(1) = 0 \] ### Step 5: Conclusion Thus, the final result is: \[ \sum_{k=1}^{89} \log_e \tan\left(\frac{\pi k}{180}\right) = 0 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(r=1)^(89)log_(10)(tan((pir)/180)) is equal to

Find the value of sum _(r=1)^(89) "log"_(10) "cot" (pir)/(180)

If a_(1),a_(2),a_(3),……a_(87),a_(88),a_(89) are the arithmetic means between 1 and 89 , then sum_(r=1)^(89)log(tan(a_(r ))^(@)) is equal to

The sum sum _ ( k = 1 ) ^ ( 20 ) k ( 1 ) / ( 2 ^ k ) is equal to l - (11) /(m ^ ( 19 )) . The value of ( l + m ) is ______ .

sum _(k=1)^(n) tan^(-1). 1/(1+k+k^(2)) is equal to

If f(x)=cos^(-1){(1-(log_(e)x)^(2))/(1+(log_(e)x)^(2))}, then f'((1)/( e )) is equal to

log_(10)tan 1^(@)+log_(10)tan2^(@)+…..+log_(10)tan89^(@) is equal to :

sum_(i=1)^(oo)sum_(j=1)^(oo)sum_(k=1)^(oo)(1)/(a^(i+j+k)) is equal to (where |a| gt 1 )

1-sum_(k=1)^9 cos\ (2pik)/10 equals to…..

(d)/(dx)(e^((1)/(2)log(1+tan^(2)x))) is equal to