Home
Class 12
MATHS
If sqrt(1- sin A)= sin "" A/2 - cos "" A...

If `sqrt(1- sin A)= sin "" A/2 - cos "" A/2 ` could lie in quadrant

A

first

B

second

C

third

D

fourth

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt{1 - \sin A} = \sin \frac{A}{2} - \cos \frac{A}{2} \) and determine the quadrants in which it can lie, we will follow these steps: ### Step 1: Square both sides We start by squaring both sides of the equation to eliminate the square root: \[ 1 - \sin A = \left( \sin \frac{A}{2} - \cos \frac{A}{2} \right)^2 \] ### Step 2: Expand the right-hand side Now we expand the right-hand side using the identity \( (x - y)^2 = x^2 - 2xy + y^2 \): \[ 1 - \sin A = \sin^2 \frac{A}{2} - 2 \sin \frac{A}{2} \cos \frac{A}{2} + \cos^2 \frac{A}{2} \] ### Step 3: Use the Pythagorean identity Recall that \( \sin^2 \theta + \cos^2 \theta = 1 \). Thus, we can simplify the equation: \[ 1 - \sin A = 1 - 2 \sin \frac{A}{2} \cos \frac{A}{2} \] ### Step 4: Simplify the equation Subtracting 1 from both sides gives us: \[ -\sin A = -2 \sin \frac{A}{2} \cos \frac{A}{2} \] This can be rewritten as: \[ \sin A = 2 \sin \frac{A}{2} \cos \frac{A}{2} \] ### Step 5: Use the double angle identity We know from the double angle identity that: \[ \sin A = \sin A \] This confirms that our equation holds true. ### Step 6: Analyze the expression \( \sin \frac{A}{2} - \cos \frac{A}{2} \) Next, we need to analyze the expression \( \sin \frac{A}{2} - \cos \frac{A}{2} \). For this expression to be non-negative (since we have a modulus), we set: \[ \sin \frac{A}{2} - \cos \frac{A}{2} \geq 0 \] ### Step 7: Find the critical angle This inequality can be rewritten as: \[ \sin \frac{A}{2} \geq \cos \frac{A}{2} \] Dividing both sides by \( \cos \frac{A}{2} \) (assuming \( \cos \frac{A}{2} \neq 0 \)) gives: \[ \tan \frac{A}{2} \geq 1 \] This implies: \[ \frac{A}{2} \geq \frac{\pi}{4} \] Thus, \[ A \geq \frac{\pi}{2} \] ### Step 8: Determine the quadrants The angle \( A \) can lie in the following ranges based on \( A \geq \frac{\pi}{2} \): - From \( \frac{\pi}{2} \) to \( \pi \) (2nd quadrant) - From \( \pi \) to \( \frac{3\pi}{2} \) (3rd quadrant) - From \( \frac{3\pi}{2} \) to \( 2\pi \) (4th quadrant) ### Conclusion Thus, the original expression can lie in the 2nd, 3rd, and 4th quadrants.
Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(sin 2x) cos 2x

If sqrt(1+ sin A )-sqrt(1-sin A )=2 cos""(A)/(2) , then value of A can be (a) 110^(@) (b) 260^(@) (c) 300^(@) (d) 190^(@)

(1- sin A - cos A)^2 = 2 (1-sin A) (1-cos A)

If |sin x+cos x|=|sin x|+|cos x| (sin x ,cos x !=0) , then in which quadrant does x lie?

Prove the following identities : (sin A + cos A)/ (sin A - cos A) + (sin A - cos A)/ (sin A + cos A) = (2)/ (2 sin^(2) A - 1)

If |sin x+cos x|=|sin x|+|cos x|(sin x ,cos x!=0) , then in which quadrant does x lies?

int(1)/(sin x - cos x +sqrt(2))dx equals

Prove that : 2 cos A = sqrt ([2 + sqrt (2 (1 + cos 4 A))]) , A in I or IV Quadrant.

Prove that : (1+sin 2A)/(cos 2A) = (cos A + sin A)/(cos A - sin A) = tan (pi/4 + A)

Prove the following identities : (1)/ (sin A + cos A) + (1)/ (sin A - cos A) = (2 sin A)/ (1 - 2 cos^(2) A)