Home
Class 12
MATHS
AB and CD are two equal and parallel cho...

AB and CD are two equal and parallel chords of the ellipse `(x^(2))/(a^(2))+(y^(2))/(b^(2)) =1`. Tangents to the ellipse at A and B intersect at P and tangents at C and D at Q. The line PQ

A

Passes through the origin

B

is blasected at the origin

C

cannot pass through the origin

D

is not bisected at the origin

Text Solution

Verified by Experts

The correct Answer is:
A, B
Promotional Banner

Similar Questions

Explore conceptually related problems

The line x cos alpha +y sin alpha =p is tangent to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1. if

The line x cos alpha + y sin alpha =p is tangent to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1. if

Find the equations of tangent and normal to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 at (x_1,y_1)

Find the equations of tangent and normal to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 at (x_1,y_1)

If any tangent to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 intercepts equal lengths l on the axes, then find l .

If a tangent to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 makes equal intercepts of length l on cordinates axes, then the values of l is

Find the points on the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 such that the tangent at each point makes equal angles with the axes.

The locus of the point of intersection of tangents to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 which meet at right , is

PA and PB are tangents drawn from a point P to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 . The area of the triangle formed by the chord of contact AB and axes of co-ordinates is constant. Then locus of P is:

The line y=x+rho (p is parameter) cuts the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 at P and Q, then prove that mid point of PQ lies on a^(2)y=-b^(2)x .