Home
Class 12
MATHS
If the conics whose equations are S1:(si...

If the conics whose equations are `S_1:(sin^2theta)x^2+(2htantheta)x y+(cos^2theta)y^2+32 x+16 y+19=0` `S_1:(sin^2theta)x^2-(2h^(prime)cottheta)x y+(sin^2theta)y^2+16 x+32 y+19=0` intersect at four concyclic points, where `theta[0,pi/2],` then the correct statement(s) can be `h+h^(prime)=0` (b) `h-h^(prime)=0` `theta=pi/4` (d) none of these

A

`h + h' =0`

B

`h-h'=0`

C

`theta= (pi)/(4)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D
Promotional Banner

Similar Questions

Explore conceptually related problems

If the conics whose equations are S-=sin^2thetax^2+2h x y+cos^2thetay^2+32 x+16 y+19=0,S^(prime)-=cos^2thetax^2+2h^(prime)x y+s in^2thetay^2+16 x+32y+19=0 intersect at four concyclic points, then, (where theta in R) h+h^(prime)=0 (b) h=h ' h+h^(prime)=1 (d) none of these

The equation sin^2theta=(x^2+y^2)/(2x y),x , y!=0 is possible if

If the system of linear equations {:((cos theta)x + (sin theta) y + cos theta=0),((sin theta)x+(cos theta)y + sin theta=0),((cos theta)x + (sin theta)y -cos theta=0):} is consistent , then the number of possible values of theta, theta in [0,2pi] is :

The solution of the equation cos^2theta-2costheta=4sintheta-sin2theta where theta in [0,pi] is

If f(x)=|{:( sin^2 theta , cos^(2) theta , x),(cos^(2) theta , x , sin^(2) theta ),( x , sin^(2) theta , cos^2 theta ):}| theta in (0,pi//2), then roots of f(x)=0 are

The angle between the pair of straight lines y^2sin^2theta-xysintheta+x^2(cos^2theta-1)=0 is

The angle between the pair of straight lines y^2sin^2 theta-xy sin ^2 theta +x^2(cos ^2theta -1) =0 si

If x =2 cos theta - cos 2 theta y = 2 sin theta - sin 2 theta Find (d^(2)y)/(dx^(2)) at theta = pi/2

If 0 lt theta lt pi and the system of equations (sin theta) x + y + z = 0 x + (cos theta) y + z = 0 (sin theta) x + (cos theta) y + z = 0 has a non-trivial solution, then theta =

Consider the cubic equation x^3-(1+cos theta+sin theta)x^2+(cos theta sin theta+cos theta+sin theta)x-sin theta. cos theta =0 Whose roots are x_1, x_2 and x_3