Home
Class 12
MATHS
If z = sec^(-1) (x + (1)/(x)) + sec^(-1)...

If `z = sec^(-1) (x + (1)/(x)) + sec^(-1) (y + (1)/(y))`, where `xy lt 0`, then the possible values of z is (are)

A

`(8pi)/(10)`

B

`(7pi)/(10)`

C

`(9pi)/(10)`

D

`(21pi)/(20)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C
Promotional Banner

Similar Questions

Explore conceptually related problems

If z = sec^(-1) (x + 1/x) + sec^(-1) (y + 1/y) , where xy< 0, then the possible value of z is (are)

If z=sec^(-1)(x+1/x)+sec^(-1)(y+1/y), where x y<0, then the possible values of z is (are) (8pi)/(10) (b) (7pi)/(10) (c) (9pi)/(10) (d) (21pi)/(20)

If x+z=1,y+z=1,x+y=4 then the value of y is

If sec x cos 5x+1=0 , where 0lt x lt 2pi , then x=

If xyz=(1-x)(1-y)(1-z) Where 0<=x,y, z<=1 , then the minimum value of x(1-z)+y (1-x)+ z(1-y) is

For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi The value of x + y + z is equal to

If y=sec^(-1)(sqrt(1+x^(2))) , when -1 lt x lt 1, then find (dy)/(dx)

If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero solution, then the possible value of k are a. -1,2 b. 1,2 c. 0,1 d. -1,1

For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi The value of cos^(-1) ("min" {x, y, z}) is

x≥0,y≥0,z≥0 and tan^(-1) x+tan^(-1) y+tan^(-1) z=k , the possible value(s) of k if x+y+z=xyz , then