Home
Class 12
MATHS
If z1=i z2 and z1-z3=i(z3-z2),then prove...

If `z_1=i z_2 and z_1-z_3=i(z_3-z_2)`,then prove that `|z_3|=sqrt(2)|z_1|.`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z|=2a n d(z_1-z_3)/(z_2-z_3)=(z-2)/(z+2) , then prove that z_1, z_2, z_3 are vertices of a right angled triangle.

If |z_1|=|z_2|=1, then prove that |z_1+z_2| = |1/z_1+1/z_2∣

Let z_1=10+6i and z_2=4+6idot If z is any complex number such that the argument of ((z-z_1))/((z-z_2)) is pi/4, then prove that |z-7-9i|=3sqrt(2) .

If z_1=2-i ,z_2=1+i , find |(z_1+z_2+1)/(z_1-z_2+i)|

If z_1=2-i ,z_2=1+i , find |(z_1+z_2+1)/(z_1-z_2+i)|

If complex numbers z_(1)z_(2) and z_(3) are such that |z_(1)| = |z_(2)| = |z_(3)| , then prove that arg((z_(2))/(z_(1))) = arg ((z_(2) - z_(3))/(z_(1) - z_(3)))^(2) .

If z_1=2-i ,\ z_2=1+i , find |(z_1+z_2+1)/(z_1-z_2+i)| .

If z_1=2-i ,\ z_2=1+i , find |(z_1+z_2+1)/(z_1-z_2+i)|

If z_1, z_2, z_3, z_4 are the affixes of four point in the Argand plane, z is the affix of a point such that |z-z_1|=|z-z_2|=|z-z_3|=|z-z_4| , then prove that z_1, z_2, z_3, z_4 are concyclic.

A(z_1),B(z_2),C(z_3) are the vertices of the triangle A B C (in anticlockwise). If /_A B C=pi//4 and A B=sqrt(2)(B C) , then prove that z_2=z_3+i(z_1-z_3)dot