Home
Class 12
MATHS
If A=[(1,2),(2,1)] and f(x)=(1+x)/(1-x),...

If `A=[(1,2),(2,1)]` and `f(x)=(1+x)/(1-x)`, then f(A) is

A

`[{:(1,1),(1,1):}]`

B

`[{:(-1,-1),(-1,-1):}]`

C

`[{:(2,2),(2,2):}]`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f(A) \) where \( A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \) and \( f(x) = \frac{1+x}{1-x} \), we can follow these steps: ### Step 1: Rewrite \( f(A) \) We can express \( f(A) \) in terms of the identity matrix \( I \): \[ f(A) = \frac{1 + A}{1 - A} \] This means we need to compute \( 1 + A \) and \( 1 - A \). ### Step 2: Calculate \( 1 + A \) The identity matrix \( I \) for a 2x2 matrix is: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] Now, we add \( A \) to \( I \): \[ 1 + A = I + A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 1+1 & 0+2 \\ 0+2 & 1+1 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} \] ### Step 3: Calculate \( 1 - A \) Now, we subtract \( A \) from \( I \): \[ 1 - A = I - A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 1-1 & 0-2 \\ 0-2 & 1-1 \end{pmatrix} = \begin{pmatrix} 0 & -2 \\ -2 & 0 \end{pmatrix} \] ### Step 4: Compute \( f(A) = (1 + A)(1 - A)^{-1} \) Next, we need to find the inverse of \( 1 - A \): \[ 1 - A = \begin{pmatrix} 0 & -2 \\ -2 & 0 \end{pmatrix} \] To find the inverse, we first calculate the determinant: \[ \text{det}(1 - A) = (0)(0) - (-2)(-2) = -4 \] Now, the adjoint of \( 1 - A \) is: \[ \text{adj}(1 - A) = \begin{pmatrix} 0 & -2 \\ -2 & 0 \end{pmatrix} \] Thus, the inverse is: \[ (1 - A)^{-1} = \frac{1}{\text{det}(1 - A)} \cdot \text{adj}(1 - A) = \frac{1}{-4} \begin{pmatrix} 0 & -2 \\ -2 & 0 \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix} \] ### Step 5: Multiply \( (1 + A) \) and \( (1 - A)^{-1} \) Now we multiply \( 1 + A \) and \( (1 - A)^{-1} \): \[ f(A) = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix} \] Calculating the product: \[ f(A) = \begin{pmatrix} 2 \cdot 0 + 2 \cdot \frac{1}{2} & 2 \cdot \frac{1}{2} + 2 \cdot 0 \\ 2 \cdot 0 + 2 \cdot \frac{1}{2} & 2 \cdot \frac{1}{2} + 2 \cdot 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \] ### Final Result Thus, the final result is: \[ f(A) = -\frac{1}{4} \begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix} = -\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x) = (x-1)/(x+1) , then f(2) is equal to

If f:R-{-(1)/(2)}toR-{(1)/(2)} is defined by f(x)=(x-3)/(2x+1) , then f^(-1)(x) is

If two roots of the equation (p-1)(x^2 +x +1)^2 -(p+1)(x^4+x^2+1)=0 are real and distinct and f(x)=(1-x)/(1+x) then f(f(x))+f(f(1/x)) is equal to

If f_1(x)=(1)/(x), f_(2) (x)=1-x, f_(3) (x)=1/(1-x) then find J(x) such that f_(2) o J o f_(1) (x)=f_(3) (x) (a) f_(1) (x) (b) (1)/(x) f_(3) (x) (c) f_(3) (x) (d) f_(2) (x)

If the function f:[1,∞)→[1,∞) is defined by f(x)=2 ^(x(x-1)) then f^-1(x) is

Let f : [-1, -1/2] rarr [-1, 1] is defined by f(x)=4x^(3)-3x , then f^(-1) (x) is

If 2f(x^2)+3f(1/x^2)=x^2-1 , then f(x^2) is

If f(x)=(x-1)/(x+1) , then f(f(a x)) in terms of f(x) is equal to (a)(f(x)-1)/(a(f(x)-1)) (b) (f(x)+1)/(a(f(x)-1)) (f(x)-1)/(a(f(x)+1)) (d) (f(x)+1)/(a(f(x)+1))