Home
Class 12
MATHS
If square matrices A and B are such that...

If square matrices A and B are such that `"AA"^(theta),"BB"^(theta)=B^(theta)B,"AB"^(theta)=B^(theta)A`, then `"AB"("AB")^(theta)` is equal to

A

`"ABA"^(theta)B^(theta)`

B

`A^(theta)B^(theta)BA`

C

`(AB)^(theta)AB`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The range of the function f (theta) =(sin theta)/( theta ) + (theta)/(tan theta) , theta in (0, (pi)/(2)) is equal to :

If (a+b)^2/(4ab)=sin^2theta , then

If (cos theta)/(a)=(sintheta)/(b), then (a)/(sec 2 theta)+(b)/(cosec 2 theta) is equal to

If tantheta=(a)/(b) , then bcos2theta+asin2theta is equal to

If tantheta=a/(b) , then bcos2theta+asin2theta is equal to

If cos 5theta=5cos theta-2thetacos^(3)theta+a cos^(5)theta+b , then the value of a+b is equal to

(b) cosec theta=1+cot theta

(b) cosec theta=1+cot theta

Prove the orthogonal matrices of order two are of the form [(cos theta,-sin theta),(sin theta,cos theta)] or [(cos theta,sin theta),(sin theta,-cos theta)]

If A= tan27theta - tantheta and B= (sintheta)/(cos 3theta) +(sin 3theta)/(cos 9theta) + (sin 9theta)/(cos 27theta) , then the value of (A+B)/(A-B) +(A-B)/(A+B) -10/3 is