Home
Class 12
MATHS
Two players P1a n dP2 play a series o...

Two players `P_1a n dP_2` play a series of `2n` games. Each game can result in either a win or a loss for `P_1dot` the total number of ways in which `P_1` can win the series of these games is equal to a. `1/2(2^(2n)-^^(2n)C_n)` b. `1/2(2^(2n)-2xx^^(2n)C_n)` c. `1/2(2^n-^^(2n)C_n)` d. `1/2(2^n-2xx^^(2n)C_n)`

A

`(1)/(3)(2^(2n)-2.""^(2n)C_(n))`

B

`(1)/(2)(2^(n)-2.""^(2n)C_(n))`

C

`(1)/(3)(2^(n)-""^(2n)C_(n))`

D

`(1)/(3)(2^(2n)-2.""^(2n)C_(n))`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (^(2n)C_0)^2-(^(2n)C_1)^2+(^(2n)C_2)^2-+(^(2n)C_(2n))^2-(-1)^n^(2n)C_ndot

The total number of ways in which 2n persons can be divided into n couples is a. (2n !)/(n ! n !) b. (2n !)/((2!)^3) c. (2n !)/(n !(2!)^n) d. none of these

The total number of ways in which 2n persons can be divided into n couples is a. (2n !)/(n ! n !) b. (2n !)/((2!)^3) c. (2n !)/(n !(2!)^n) d. none of these

The total number of terms which are dependent on the value of x in the expansion of (x^2-2+1/(x^2))^n is equal to 2n+1 b. 2n c. n d. n+1

The total number of ways of selecting two numbers from the set {1,2, 3, 4, ........3n} so that their sum is divisible by 3 is equal to a. (2n^2-n)/2 b. (3n^2-n)/2 c. 2n^2-n d. 3n^2-n

Prove the equality 1^(2)+2^(2)+3^(2) . . .+n^(2)=.^(n+1)C_(2)+2(.^(n)C_(2)+.^(n-1)C_(2) . . .+.^(2)C_(2)) .

Prove that .^n C_0 . ^(2n) C_n- ^n C_1 . ^(2n-2)C_n+^n C_2 . ^(2n-4)C_n-=2^ndot

Find the sum .^(n)C_(0) + 2 xx .^(n)C_(1) + xx .^(n)C_(2) + "….." + (n+1) xx .^(n)C_(n) .

The middle term in the expansion of ((2x)/3-3/(2x^2))^(2n) is a. \ ^(2n)C_n b. (-1)^n\ ^(2n)C_(n\ )x^(-n) c. \ ^(2n)C_n x^(-n) d. none of these

For all positive integers n , show that \ ^(2n)C_n+\ ^(2n)C_(n-1)=1/2(\ ^(2n+2)C_(n+1)) .