Home
Class 12
MATHS
If vecA = ( 1,1,1) and vecC= (0, 1,-1) a...

If `vecA = ( 1,1,1) and vecC= (0, 1,-1)` are given vectors the vector `vecB` satisfying the equations `vecA xx vecB = vecC and vecA.vecB = 3` is ________.

A

`((5)/(3),(2)/(3),(2)/(3))`

B

`(-(5)/(3),(2)/(3),(2)/(3))`

C

`((5)/(3),(2)/(3),-(2)/(3))`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If vecA=(1,1,1) and vecC=(0,1,-1) are given vectors then find a vector vecB satisfying equations vecAxxvecB=vecC and vecA.vecB=3

If veca=(0,1,-1,) and vecc=(1,1,1) are given vectors then find a vector vecb satisfying vecaxxvecb=vecc and veca.vecb=3

Three vectors vecA, vecB and vecC satisfy the relation vecA. vecB=0 and vecA. vecC=0. The vector vecA is parallel to

If veca, vecb, vecc are three non-coplanar vectors, then a vector vecr satisfying vecr.veca=vecr.vecb=vecr.vecc=1 , is

If veca , vecb , vecc are unit vectors such that veca+ vecb+ vecc= vec0 find the value of (veca* vecb+ vecb* vecc+ vecc*veca) .

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) =

If veca, vecb, vecc are the unit vectors such that veca + 2vecb + 2vecc=0 , then |veca xx vecc| is equal to:

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then: