Home
Class 12
MATHS
If vec xa n d vec y are two non-colline...

If ` vec xa n d vec y` are two non-collinear vectors and a, b, and c represent the sides of a ` A B C` satisfying `(a-b) vec x+(b-c) vec y+(c-a)( vec x xx vec y)=0,` then ` A B C` is (where ` vec xxx vec y` is perpendicular to the plane of `xa n dy` ) a. an acute-angled triangle b. an obtuse-angled triangle c. a right-angled triangle d. a scalene triangle

A

acute angled

B

obtuse angled

C

right angled

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec xa n d vec y are two non-collinear vectors and A B C isa triangle with side lengths a ,b ,a n dc satisfying (20 a-15 b) vec x+(15b-12 c) vec y+(12 c-20 a)( vecx xx vec y)=0, then triangle A B C is a. an acute-angled triangle b. an obtuse-angled triangle c. a right-angled triangle d. an isosceles triangle

If veca , vec b and vec c represents three sides of a triangle taken in order prove that veca xx vec b = vec b xx vec c = vec c xx vec a

veca , vec b , vec c are non-coplanar vectors and x vec a + y vec b + z vec c = vec 0 then

vec a , vec b and vec c are the position vectors of points A ,B and C respectively, prove that : vec a× vec b+ vec b× vec c+ vec c× vec a is vector perpendicular to the plane of triangle A B Cdot

If vec a ,\ vec b ,\ vec c\ represent the sides of a triangle taken in order, then write the value of vec a+ vec b+ vec c

If vec a,vec b,vec c are three non-coplanar vectors represented by concurrent edges of a parallelopiped of volume 4, (vec a+vec b)+(vec bxx vec c)+(vec b+vec c).(vec c xx vec a) + (vec c +vec a).(vec axx vec b) is equal to

If vec A cdot vec B =0 and vec A xx vec C=0 , then the angle between B and C is

If a vector vec a is perpendicular to two non-collinear vector vec b and vec c , then vec a is perpendicular to every vector in the plane of vec b and vec c .

If vec a , vec b ,a n d vec c are three non-coplanar non-zero vecrtors, then prove that ( vec a . vec a) vec bxx vec c+( vec a . vec b) vec cxx vec a+( vec a . vec c) vec axx vec b=[ vec b vec c vec a] vec a

If 4 vec a+5 vec b+9 vec c=0, then ( vec axx vec b)xx[( vec bxx vec c)xx( vec cxx vec a)] is equal to a vector perpendicular to the plane of a ,b ,c b. a scalar quantity c. vec0 d. none of these