Home
Class 12
MATHS
Let plambda^4 + qlambda^3 + rlambda^2 + ...

Let `plambda^4 + qlambda^3 + rlambda^2 + slambda+t=|(lambda^2+3lambda, lambda-1,lambda+3),(lambda+1,-2lambda, lambda-4),(lambda-3, lambda+4,3lambda)|` be an identity in `lambda` , where p,q,r,s and t are constants. Then , the value of t is ___

A

1

B

0

C

`-1`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If plambda^4+qlambda^3+rlambda^2+slambda+t=|[lambda^2+3lambda, lambda-1, lambda+3] , [lambda^2+1, 2-lambda, lambda-3] , [lambda^2-3, lambda+4, 3lambda]| then t=

If plambda^4+qlambda^3+rlambda^2+slambda+t=|[lambda^2+3lambda, lambda-1, lambda+3] , [lambda^2+1, 2-lambda, lambda-3] , [lambda^2-3, lambda+4, 3lambda]| then t=

If [(lambda^(2)-2lambda+1,lambda-2),(1-lambda^(2)+3lambda,1-lambda^(2))]=Alambda^(2)+Blambda+C , where A, B and C are matrices then find matrices B and C.

If the matrix A = [[lambda_(1)^(2), lambda_(1)lambda_(2), lambda_(1) lambda_(3)],[lambda_(2)lambda_(1),lambda_(2)^(2),lambda_(2)lambda_(3)],[lambda_(3)lambda_(1),lambda_(3)lambda_(2),lambda_(3)^(2)]] is idempotent, the value of lambda_(1)^(2) + lambda_(2)^(2) + lambda _(3)^(2) is

If the points A(lambda, 2lambda), B(3lambda,3lambda) and C(3,1) are collinear, then lambda=

Find lambda if (lambda, lambda +1) is an interior point of Delta ABC where, A-=(0,3), B-= (-2,0) and C -= (6, 1) .

Show that the area of the triangle with vertices (lambda, lambda-2), (lambda+3, lambda) and (lambda+2, lambda+2) is independent of lambda .

If x - lambda is a factor of x^(4)-lambda x^(3)+2x+6 . Then the value of lambda is

If veca satisfies vec axx( hat i+2 hat j+ hat k)= hat i- hat k , then vec a is equal to a. lambda hat i+(2lambda-1) hat j+lambda hat k ,lambda in R b. lambda hat i+(1-2lambda) hat j+lambda hat k ,lambda inR c. lambda hat i+(2lambda+1) hat j+lambda hat k ,lambda inR d. lambda hat i-(1+2lambda) hat j+lambda hat k ,lambda inR

Find all values of lambda for which the (lambda-1)x+(3lambda+1)y+2lambdaz=0(lambda-1)x+(4lambda-2)y+(lambda+3)z=0 2x+(3lambda+1)y+3(lambda-1)z=0 possess non-trivial solution and find the ratios x:y:z, where lambda has the smallest of these value.