Home
Class 12
MATHS
The solution set of the equation |{:(1,4...

The solution set of the equation `|{:(1,4,20),(1,-2,5),(1,2x,5x^(2)):}|=0` is

A

{1, 2}

B

`{-1,1}`

C

`{-1,2}`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given by the determinant \( |(1, 4, 20), (1, -2, 5), (1, 2x, 5x^2)| = 0 \), we will follow these steps: ### Step 1: Expand the Determinant We start by expanding the determinant. The determinant of a 3x3 matrix can be calculated using the formula: \[ |A| = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our determinant, we have: \[ \begin{vmatrix} 1 & 4 & 20 \\ 1 & -2 & 5 \\ 1 & 2x & 5x^2 \end{vmatrix} \] Using the first row to expand the determinant: \[ = 1 \cdot \begin{vmatrix} -2 & 5 \\ 2x & 5x^2 \end{vmatrix} - 4 \cdot \begin{vmatrix} 1 & 5 \\ 1 & 5x^2 \end{vmatrix} + 20 \cdot \begin{vmatrix} 1 & -2 \\ 1 & 2x \end{vmatrix} \] ### Step 2: Calculate the 2x2 Determinants Now, we will calculate each of the 2x2 determinants: 1. For \( \begin{vmatrix} -2 & 5 \\ 2x & 5x^2 \end{vmatrix} \): \[ = (-2)(5x^2) - (5)(2x) = -10x^2 - 10x \] 2. For \( \begin{vmatrix} 1 & 5 \\ 1 & 5x^2 \end{vmatrix} \): \[ = (1)(5x^2) - (5)(1) = 5x^2 - 5 \] 3. For \( \begin{vmatrix} 1 & -2 \\ 1 & 2x \end{vmatrix} \): \[ = (1)(2x) - (-2)(1) = 2x + 2 \] ### Step 3: Substitute Back into the Determinant Now substitute these back into the determinant expansion: \[ = 1(-10x^2 - 10x) - 4(5x^2 - 5) + 20(2x + 2) \] ### Step 4: Simplify the Expression Now we simplify the expression: \[ = -10x^2 - 10x - 20x^2 + 20 + 40x + 40 \] Combine like terms: \[ = (-10x^2 - 20x^2) + (-10x + 40x) + (20 + 40) \] \[ = -30x^2 + 30x + 60 \] ### Step 5: Set the Expression to Zero Now we set the expression equal to zero: \[ -30x^2 + 30x + 60 = 0 \] Dividing the entire equation by -30: \[ x^2 - x - 2 = 0 \] ### Step 6: Factor the Quadratic Equation Now we factor the quadratic equation: \[ (x - 2)(x + 1) = 0 \] ### Step 7: Solve for x Setting each factor to zero gives us: 1. \( x - 2 = 0 \) → \( x = 2 \) 2. \( x + 1 = 0 \) → \( x = -1 \) ### Final Solution Thus, the solution set of the equation is: \[ \{ -1, 2 \} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Sum of real roots of the euation |{:(1,4,20),(1,-2,5),(1,2x,5x^(2)):}|=0 is

The solution set of the equation x^(log_x(1-x)^2)=9 is

The solution set of the equation sin^(-1)x=2 tan^(-1)x is

The solution set of the equation |2x+3| -|x-1|=6 is :

The solution set of the equation (x+1)log_(3)^(2)x+4xlog_(3)-16=0is

The equation |{:(x-2,3,1),(4x-2,10,4),(2x-1,5,1):}|=0 is satisfied by

The number of solutions of the equation |x-1|-|2x-5|=2x

The solution set of the equation |(x+1)/(x)|+|x+1|=((x+1)^(2))/(|x|) , is

The solution set of the equation "log"_(1//3)(2^(x+2)-4^(x)) ge -2 , is

The number of solution of the equation |x-x^(2)-1| = |2x -3-x^(2)| is (1) 0 (2) 1 (3) (4) Infinitely many