Home
Class 12
MATHS
If alpha, beta, gamma are the roots of x...

If `alpha, beta, gamma` are the roots of `x^(3) + ax^(2) + b = 0`, then the value of `|(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)|`, is

A

a

B

b

C

`a^(3)`

D

`b^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the determinant \[ D = \begin{vmatrix} \alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta \end{vmatrix} \] where \(\alpha, \beta, \gamma\) are the roots of the polynomial \(x^3 + ax^2 + b = 0\). ### Step-by-step Solution: 1. **Understanding the Determinant**: The determinant \(D\) can be computed using the properties of determinants. This specific form is known as a cyclic determinant. 2. **Using the Cyclic Property**: The value of the determinant can be expressed in terms of the roots. For a cyclic determinant of this form, there is a known result: \[ D = 3\alpha\beta\gamma - (\alpha^3 + \beta^3 + \gamma^3) \] 3. **Finding \(\alpha^3 + \beta^3 + \gamma^3\)**: We can use the identity: \[ \alpha^3 + \beta^3 + \gamma^3 - 3\alpha\beta\gamma = (\alpha + \beta + \gamma)(\alpha^2 + \beta^2 + \gamma^2 - \alpha\beta - \beta\gamma - \gamma\alpha) \] Here, we know: - \(\alpha + \beta + \gamma = -a\) (from Vieta's formulas) - \(\alpha\beta + \beta\gamma + \gamma\alpha = 0\) (since \(b = 0\) in the polynomial) 4. **Calculating \(\alpha^2 + \beta^2 + \gamma^2\)**: We can express \(\alpha^2 + \beta^2 + \gamma^2\) using: \[ \alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha) \] Substituting the known values: \[ \alpha^2 + \beta^2 + \gamma^2 = (-a)^2 - 2(0) = a^2 \] 5. **Substituting Back**: Now we substitute back into the identity for \(\alpha^3 + \beta^3 + \gamma^3\): \[ \alpha^3 + \beta^3 + \gamma^3 = 3\alpha\beta\gamma + (-a)(a^2) \] Since \(\alpha\beta\gamma = -b\), we can write: \[ \alpha^3 + \beta^3 + \gamma^3 = 3(-b) - a^3 \] 6. **Final Calculation**: Substitute \(\alpha^3 + \beta^3 + \gamma^3\) back into the determinant: \[ D = 3\alpha\beta\gamma - (3(-b) - a^3) = 3(-b) + a^3 \] Since \(b = 0\) (as given in the polynomial), we find: \[ D = a^3 \] 7. **Conclusion**: Thus, the value of the determinant is: \[ D = 3a^3 \] ### Final Answer: The value of \(|(\alpha, \beta, \gamma), (\beta, \gamma, \alpha), (\gamma, \alpha, \beta)|\) is \(3a^3\).
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are roots of the equation x^(3)+px+q=0 then the value of |{:(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta):}| is

If alpha, beta, gamma are the roots of x^(3)+ax+b=0 , then find the value of alpha^(3)+beta^(3)+gamma^(3) .

If alpha, beta and gamma are the roots of the equation x^(3)-px^(2)+qx-r=0 , then the value of (alphabeta)/(gamma)+(betagamma)/(alpha)+(gammaalpha)/(beta) is equal to

If alpha,beta,gamma are the roots of x^(3)+2x^(2)-x-3=0 The value of |{:(alpha, beta ,gamma),(gamma,alpha ,beta),(beta,gamma ,alpha):}| is equal to

If alpha, beta. gamma are the roots of x^3 + px^2 + q = 0, where q=0, ther Delta=[(1/alpha,1/beta,1/gamma),(1/beta,1/gamma,1/alpha),(1/gamma,1/alpha,1/beta)] equals (A) alpha beta gamma (B) alpha +beta + gamma (C) 0 (D) none of these

If alpha, beta, gamma are the roots of the equation x^3 + px^2 + qx + r = n then the value of (alpha - 1/(beta gamma)) (beta -1/(gamma alpha)) (gamma-1/(alpha beta)) is:

if alpha,beta,gamma are roots of 2x^3+x^2-7=0 then find the value of sum_(alpha,beta,gamma)(alpha/beta+beta/alpha)

If alpha,beta,gamma are the roots of 4x^3-6x^2+7x+3=0 then find the value of alpha beta +beta gamma+gamma alpha .

If alpha, beta, gamma are the roots of the equation x^(3) + x + 1 = 0 , then the value of alpha^(3) + beta^(3) + gamma^(3) , is

If alpha,beta,gamma are the roots of a x^3+b x^2+cx+d=0 and |[alpha,beta,gamma],[beta,gamma,alpha],[gamma,alpha,beta]|=0, alpha!=beta!=gamma then find the equation whose roots are alpha+beta-gamma,beta+gamma-alpha , and gamma+alpha-beta .