Home
Class 12
MATHS
If (1+ i sqrt(3))^(1999)=a+ib, then...

If `(1+ i sqrt(3))^(1999)=a+ib`, then

A

`a=2^(1998),b=2^(1998)sqrt(3)`

B

`a=2^(1999),b=2^(1999)sqrt(3)`

C

`a=-2^(1998),b=-2^(1998)sqrt(3)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( (1 + i \sqrt{3})^{1999} = a + ib \), we will follow these steps: ### Step 1: Convert to Polar Form First, we need to express \( 1 + i \sqrt{3} \) in polar form. We can find the modulus and the argument of the complex number. - **Modulus**: \[ r = |1 + i \sqrt{3}| = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{1 + 3} = \sqrt{4} = 2 \] - **Argument**: \[ \theta = \tan^{-1}\left(\frac{\sqrt{3}}{1}\right) = \frac{\pi}{3} \] Thus, we can express \( 1 + i \sqrt{3} \) in polar form: \[ 1 + i \sqrt{3} = 2 \left( \cos\left(\frac{\pi}{3}\right) + i \sin\left(\frac{\pi}{3}\right) \right) \] ### Step 2: Apply De Moivre's Theorem Now we can raise this expression to the power of 1999 using De Moivre's theorem: \[ (1 + i \sqrt{3})^{1999} = \left(2 \left( \cos\left(\frac{\pi}{3}\right) + i \sin\left(\frac{\pi}{3}\right)\right)\right)^{1999} \] \[ = 2^{1999} \left( \cos\left(1999 \cdot \frac{\pi}{3}\right) + i \sin\left(1999 \cdot \frac{\pi}{3}\right) \right) \] ### Step 3: Simplify the Angle Next, we simplify \( 1999 \cdot \frac{\pi}{3} \): \[ 1999 \cdot \frac{\pi}{3} = \frac{1999\pi}{3} \] To find the equivalent angle in the range \( [0, 2\pi) \), we can reduce \( \frac{1999}{3} \): \[ 1999 \div 3 = 666 \quad \text{(remainder 1)} \] Thus, \[ \frac{1999\pi}{3} = 666 \cdot 2\pi + \frac{\pi}{3} \] This means: \[ \cos\left(\frac{1999\pi}{3}\right) = \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \] \[ \sin\left(\frac{1999\pi}{3}\right) = \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \] ### Step 4: Substitute Back Now substituting back into our expression: \[ (1 + i \sqrt{3})^{1999} = 2^{1999} \left( \frac{1}{2} + i \frac{\sqrt{3}}{2} \right) \] \[ = 2^{1999} \cdot \frac{1}{2} + i \cdot 2^{1999} \cdot \frac{\sqrt{3}}{2} \] \[ = 2^{1998} + i \cdot 2^{1998} \sqrt{3} \] ### Step 5: Identify \( a \) and \( b \) From this, we can identify: \[ a = 2^{1998}, \quad b = 2^{1998} \sqrt{3} \] ### Final Answer Thus, the final result is: \[ (1 + i \sqrt{3})^{1999} = 2^{1998} + i \cdot 2^{1998} \sqrt{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 3^(49)(x+i y)=(3/2+(sqrt(3))/2i)^(100) and x=k y then k is: a. -1//3 b. sqrt(3) c. -sqrt(3) d. -1/(sqrt(3))

Express (1+i)^(-1) ,where, i= sqrt(-1) in the form A+iB.

If cos(logi ^(4i) )=a+ib , then find a and b.

if cos (1-i) = a+ib, where a , b in R and i = sqrt(-1) , then

Express the comple number ((1+sqrt(3)i)^(2))/(sqrt(3)-i) in the form of a+ib . Hence find the modulus and argument of the complex number.

If (a-ib)/(a+ib)= (1+i)/(1-i) , then show that a+b=0

If sin (log_(e)i^(i))=a+ib, where i=sqrt(-1), find a and b, hence and find cos(log_(e)i^(i)) .

If (a+ib)= (1+i ) /(1-i) , then prove that (a ^2+b^ 2 )=1

If (2 + 3i)/(3 - 4i) = a + ib , find the values a and b.

Sum of four consecutive powers of i(iota) is zero. i.e., i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I. If sum_(n=1)^(25)i^(n!)=a+ib, " where " i=sqrt(-1) , then a-b, is