Home
Class 12
MATHS
If Sn=1/1^3 + (1+2)/(1^3 + 2^3) + (1+2+3...

If `S_n=1/1^3 + (1+2)/(1^3 + 2^3) + (1+2+3)/(1^3+2^3+3^3)`+…..n terms, then `lim_(n to oo) [S_n]` , where [. ] denotes the greatest integer function, is equal to:

A

4

B

1

C

`1//2`

D

2

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If 1/1^3 + (1+2)/(1^3+2^3)+(1+2+3)/(1^3+2^3+3^3) +.......n terms then lim_(n->oo) [S_n]

Evaluate lim_(n->oo) [sum_(r=1)^n1/2^r] , where [.] denotes the greatest integer function.

The value of lim_(nto oo)(sqrt(n^(2)+n+1)-[sqrt(n^(2)+n+1)]) where [.] denotes the greatest integer function is

show that [(sqrt(3) +1)^(2n)] + 1 is divisible by 2^(n+1) AA n in N , where [.] denote the greatest integer function .

The value of lim(n->oo)((1.5)^n + [(1 + 0.0001)^(10000)]^n)^(1/n) , where [.] denotes the greatest integer function is:

If S_n=1/1^3 +(1+2)/(1^3+2^3)+...+(1+2+3+...+n)/(1^3+2^3+3^3+...+n^3) Then S_n is not greater than

The value o lim_(xtooo)(1/(n^(3)))([1^(2)x+1^(2)]+[2^(2)x+2^(2)]+…..+[n^(2)x+n^(2)]) is where [.] denotes the greatest integer function.

[-(1)/(3)]+[-(1)/(3)-(1)/(100)]+[-(1)/(3)-(2)/(100)]+….+[-(1)/(3)-(99)/(100)] is equal to (where [.] denotes greatest integer function)

The range of f(x)=[1+sinx]+[2+s in2/x]+[3+s in x/3]++[n+s in x/n]AAx in [0,pi] , where [.] denotes the greatest integer function, is, {(n+n-2^2)/2,(n(n+1))/2} {(n(n+1))/2} {(n^2+n-2^)/2,(n(n+1))/2(n^2+n+2)/2} [(n(n+1))/2,(n^2+n+2)/2]

If S_(n)=(1^(2).(2))/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+…(n^(2).(n+1))/(n!) then lim_(n rarr infty) S_(n) is equal to