Home
Class 12
MATHS
The minimum value of (x^4+y^4+z^2)/(x y ...

The minimum value of `(x^4+y^4+z^2)/(x y z)` for positive real numbers `x ,y ,z` is (a) `sqrt(2)` (b) `2sqrt(2)` (c) `4sqrt(2)` (d) `8sqrt(2)`

A

`sqrt(2)`

B

`2sqrt(2)`

C

`4sqrt(2)`

D

`8sqrt(2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If x is a positive real number and x^2=2, then x^3= (a) sqrt(2) (b) 2sqrt(2) (c) 3sqrt(2) (d) 4

Maximum value of |z+1+i|, where z in S is (a) sqrt(2) (b) 2 (c) 2sqrt(2) (d) 3sqrt(2)

If x , y ,z are positive real numbers show that: sqrt(x^(-1)y)dotsqrt(y^(-1)z)dotsqrt(z^(-1)x)=1

If x , y ,z are positive real numbers show that: sqrt(x^(-1)y)dotsqrt(y^(-1)z)dotsqrt(z^(-1)x)=1

The shortest distance between line y-x=1 and curve x=y^2 is (a) (3sqrt2)/8 (b) 8/(3sqrt2) (c) 4/sqrt3 (d) sqrt3/4

If x, y, z are distinct positive real numbers is A.P. then (1)/(sqrt(x)+sqrt(y)), (1)/(sqrt(z)+sqrt(x)), (1)/(sqrt(y)+sqrt(z)) are in

If |z-4/2z|=2 then the least of |z| is (A) sqrt(5)-1 (B) sqrt(5)-2 (C) sqrt(5) (D) 2

Y=log(4/(sqrt(x+2)+sqrt(2-x)))

Assuming that x , y , z are positive real numbers, simplify each of the following: (i) (sqrt(x))^(-2/3)\ \ sqrt(y^4)\ -:\ sqrt(x y^(-1/2))

If the line y=mx+c is a tangent to the ellipse x^(2)+2y^(2)=4 , then the minimum possible value of c is (a) -sqrt(2) (b) sqrt(2) (c) 2 (d) 1