Home
Class 12
MATHS
z is a complex number such that z+1/z=2c...

z is a complex number such that `z+1/z=2cos 3^0` ,then the value of `z^(2000)+ 1/z^(2000)` is equal to

A

0

B

1

C

`-1`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we are given that \( z + \frac{1}{z} = 2 \cos 3^\circ \). We need to find the value of \( z^{2000} + \frac{1}{z^{2000}} \). ### Step 1: Start with the given equation We have: \[ z + \frac{1}{z} = 2 \cos 3^\circ \] ### Step 2: Square both sides Squaring both sides gives: \[ \left(z + \frac{1}{z}\right)^2 = (2 \cos 3^\circ)^2 \] Expanding the left side: \[ z^2 + 2 + \frac{1}{z^2} = 4 \cos^2 3^\circ \] Rearranging gives: \[ z^2 + \frac{1}{z^2} = 4 \cos^2 3^\circ - 2 \] ### Step 3: Use the double angle formula Using the double angle formula for cosine, we know: \[ 4 \cos^2 3^\circ - 2 = 2 \cos 6^\circ \] Thus, we have: \[ z^2 + \frac{1}{z^2} = 2 \cos 6^\circ \] ### Step 4: Cube both sides Next, we will find \( z^3 + \frac{1}{z^3} \). We use the identity: \[ z^3 + \frac{1}{z^3} = \left(z + \frac{1}{z}\right)\left(z^2 + \frac{1}{z^2}\right) - \left(z + \frac{1}{z}\right) \] Substituting the known values: \[ z^3 + \frac{1}{z^3} = (2 \cos 3^\circ)(2 \cos 6^\circ) - 2 \cos 3^\circ \] This simplifies to: \[ z^3 + \frac{1}{z^3} = 2 \cos 3^\circ (2 \cos 6^\circ - 1) \] ### Step 5: Use the triple angle formula Using the triple angle formula for cosine: \[ \cos 3\theta = 4 \cos^3 \theta - 3 \cos \theta \] We can express \( z^3 + \frac{1}{z^3} \) in terms of \( \cos 9^\circ \): \[ z^3 + \frac{1}{z^3} = 2 \cos 9^\circ \] ### Step 6: Generalize for \( z^n + \frac{1}{z^n} \) We can see a pattern forming: - \( z + \frac{1}{z} = 2 \cos 3^\circ \) - \( z^2 + \frac{1}{z^2} = 2 \cos 6^\circ \) - \( z^3 + \frac{1}{z^3} = 2 \cos 9^\circ \) From this, we can generalize: \[ z^n + \frac{1}{z^n} = 2 \cos(3n^\circ) \] ### Step 7: Calculate \( z^{2000} + \frac{1}{z^{2000}} \) Now substituting \( n = 2000 \): \[ z^{2000} + \frac{1}{z^{2000}} = 2 \cos(6000^\circ) \] ### Step 8: Simplify \( \cos(6000^\circ) \) To simplify \( \cos(6000^\circ) \), we can reduce it: \[ 6000 \div 360 = 16.6667 \quad \text{(which means 16 complete cycles and a remainder)} \] Calculating the remainder: \[ 6000 - 360 \times 16 = 240^\circ \] Thus: \[ \cos(6000^\circ) = \cos(240^\circ) = -\frac{1}{2} \] ### Final Step: Substitute back Finally, substituting back: \[ z^{2000} + \frac{1}{z^{2000}} = 2 \left(-\frac{1}{2}\right) = -1 \] ### Conclusion The value of \( z^{2000} + \frac{1}{z^{2000}} \) is: \[ \boxed{-1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If z is a complex number such that |z|>=2 then the minimum value of |z+1/2| is

If z is a complex number and iz^(3) + z^(2) - z + I = 0 , the value of |z| is

Let z=1+ai be a complex number, a > 0 ,such that z^3 is a real number. Then the sum 1+z+z^2+...+ z^11 is equal to:

For a complex number Z, if arg Z=(pi)/(4) and |Z+(1)/(Z)|=4 , then the value of ||Z|-(1)/(|Z|)| is equal to

If z 1 ​ and z 2 ​ are two non zero complex numbers such that ∣z 1 ​ +z 2 ​ ∣=∣z 1 ​ ∣+∣z 2 ​ ∣ then arg z 1 ​ -arg z 2 ​ is equal to

If z is a complex number satisfying z^4+z^3+2z^2+z+1=0 then the set of possible values of z is

If z is a complex number satisfying z^4+z^3+2z^2+z+1=0 then the set of possible values of z is

If the complex numbers z_(1),z_(2),z_(3) are in AP, then they lie on

If z_1,z_2, z_3 are complex numbers such that |z_1|=|z_2|=|z_3|=|1/z_1+1/z_2+1/z_3|=1 then |z_1+z_2+z_3| is equal to

If z_1,z_2, z_3 are complex numbers such that |z_1|=|z_2|=|z_3|=|1/z_1+1/z_2+1/z_3|=1 then |z_1+z_2+z_3| is equal to