Home
Class 12
MATHS
If px^(4)+qx^(3)+rx^(2)+sx+t=|{:(x^(2)+3...

If `px^(4)+qx^(3)+rx^(2)+sx+t=|{:(x^(2)+3x,x-1,x+3),(x^(2)+1,2-x,x-3),(x^(2)-3,x+4,3x):}|` then t is equal to

A

`-5`

B

`21`

C

`-3`

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given in the question and find the value of \( t \) when \( x = 0 \). ### Step-by-step Solution: 1. **Set Up the Determinant**: The determinant we need to evaluate is: \[ \begin{vmatrix} x^2 + 3x & x - 1 & x + 3 \\ x^2 + 1 & 2 - x & x - 3 \\ x^2 - 3 & x + 4 & 3x \end{vmatrix} \] 2. **Substitute \( x = 0 \)**: To find \( t \), we substitute \( x = 0 \) into the determinant: \[ \begin{vmatrix} 0^2 + 3(0) & 0 - 1 & 0 + 3 \\ 0^2 + 1 & 2 - 0 & 0 - 3 \\ 0^2 - 3 & 0 + 4 & 3(0) \end{vmatrix} = \begin{vmatrix} 0 & -1 & 3 \\ 1 & 2 & -3 \\ -3 & 4 & 0 \end{vmatrix} \] 3. **Calculate the Determinant**: We can expand the determinant using the first row: \[ = 0 \cdot \begin{vmatrix} 2 & -3 \\ 4 & 0 \end{vmatrix} - (-1) \cdot \begin{vmatrix} 1 & -3 \\ -3 & 0 \end{vmatrix} + 3 \cdot \begin{vmatrix} 1 & 2 \\ -3 & 4 \end{vmatrix} \] The first term is zero because it is multiplied by zero. Now, calculate the second term: \[ = -(-1) \cdot (1 \cdot 0 - (-3) \cdot (-3)) = 1 \cdot (0 - 9) = -9 \] Now, calculate the third term: \[ = 3 \cdot (1 \cdot 4 - 2 \cdot (-3)) = 3 \cdot (4 + 6) = 3 \cdot 10 = 30 \] Combine the results: \[ = 0 + 9 + 30 = 39 \] 4. **Final Value of \( t \)**: Therefore, the value of \( t \) is: \[ t = 39 \] ### Conclusion: The value of \( t \) is \( 39 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If px^4+qx^3+rx^2+sx+t=|(x^2+3x,x-1,x+3),(x+1,2-x,x-3),(x-3,x+4,3x)| then t is equal to

Let ax^3+bx^2+cx+d=|{:(3x,x+1,x-1),(x-3,-2x,x+2),(x+3,x-4,5x):}| then the value of d is

If |(x^2+x,x+1,x-2),(2x^2+3x-1,3x,3x-3),(x^2+2x+3,2x-1,2x-1)|=ax-12 then 'a' is equal to (1) 12 (2) 24 (3) -12 (4) -24

If |(x^2+x,x+1,x-2),(2x^2+3x-1,3x,3x-3),(x^2+2x+3,2x-1,2x-1)|=ax-12 then 'a' is equal to (1) 12 (2) 24 (3) -12 (4) -24

lim_(x to 2) (x^(3) + x^(2) + 4x + 12)/(x^(3) - 3x + 2) is equal to

lim_(xtooo) ((x^(3))/(3x^(2)-4)-(x^(2))/(3x+2))" is equal to "

Lt_(x rarr1) (x^(3)+3x-4)/(2x^(2) + x-3) is equal to

1+(2x)/(1!)+(3x^(2))/(2!)+(4x^(3))/(3!)+..infty is equal to

If x^(2) - 3x + 2 is factor of x^(4) - px^(2) + q then 2q - p is equal to

Simplify: (x^3-2x^2+3x-4)(x-1)-\ (2x-3)(x^2-x+1)