Home
Class 12
MATHS
If Delta(x)=|((e^x,sin2x,tanx^2)),((In(1...

If `Delta(x)=|((e^x,sin2x,tanx^2)),((In(1+x),cosx,sinx)),((cosx^2,e^x-1,sinx^2))|=A+Bx+Cx^2+....` then B is equal to

A

0

B

1

C

2

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given by: \[ \Delta(x) = \left| \begin{array}{ccc} e^x & \sin(2x) & \tan(x^2) \\ \ln(1+x) & \cos(x) & \sin(x) \\ \cos(x^2) & e^x - 1 & \sin(x^2) \end{array} \right| \] and express it in the form \( A + Bx + Cx^2 + \ldots \), and find the value of \( B \). ### Step 1: Differentiate the Determinant To find \( B \), we will differentiate the determinant with respect to \( x \). Using the properties of determinants, we differentiate each column while keeping the other columns constant. ### Step 2: Evaluate the Determinant at \( x = 0 \) After differentiating, we will substitute \( x = 0 \) into the determinant. 1. **Evaluate each function at \( x = 0 \)**: - \( e^0 = 1 \) - \( \sin(2 \cdot 0) = 0 \) - \( \tan(0^2) = 0 \) - \( \ln(1 + 0) = 0 \) - \( \cos(0) = 1 \) - \( \sin(0) = 0 \) - \( \cos(0^2) = 1 \) - \( e^0 - 1 = 0 \) - \( \sin(0^2) = 0 \) ### Step 3: Substitute Values into the Determinant Substituting these values into the determinant, we get: \[ \Delta(0) = \left| \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array} \right| \] ### Step 4: Calculate the Determinant Calculating this determinant: \[ \Delta(0) = 1 \cdot (1 \cdot 0 - 0 \cdot 0) - 0 \cdot (0 \cdot 0 - 0 \cdot 1) + 0 \cdot (0 \cdot 0 - 1 \cdot 1) = 0 \] ### Step 5: Differentiate Again to Find \( B \) Since \( \Delta(0) = 0 \), we will differentiate the determinant again and evaluate at \( x = 0 \) to find \( B \). After differentiating and substituting \( x = 0 \), we will find that the linear term \( B \) is equal to 0. ### Conclusion Thus, the value of \( B \) is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If Delta (x)=|{:(x,1+x^(2),x^(3)),(log(1+x^(2)),e^(x),sinx),(cosx,tanx,sin^(2)x):}| then

Find intcos2x*log((cosx+sinx)/(cosx-sinx))dx

If [{:(,e^(x),sin x),(,cos x,ln(1+x))]:}=A+Bx+Cx^(2)+....... then find the value of A and B.

int(sin2x)/((sinx+cosx)^2)dx

If 2y=(cot^(-1) ((sqrt3cosx+sinx)/(cosx-sqrt3sinx)))^2, x in (0,pi/2) then y' is equal to

If f(x)=|(0,x^2-sinx,cosx-2),(sinx-x^2,0,1-2x),(2-cosx,2x-1,0)|, then int f(x) dx is equal to

If Delta (x)=|{:(1,cos x,1-cos x),(1+sin x,cos x,1+sinx-cosx),(sinx,sinx,1):}| then int_(0)^(pi//2)Delta(x) dx is equal to

If int(1+xcosx)/(x(1-x^(2)e^(2sinx)))dx = k" ln "sqrt((x^(2)e^(2 sinx))/(1-x^(2)e^(2sinx)))+C then k is equal to:

If |cosx|^(sin^2x-3/2sinx+1/2)=1 then x=

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)| , then the value of int_0^(pi//2){f(x) + f'(x)} dx is