Home
Class 12
MATHS
If a, b, c are even natural numbers, the...

If a, b, c are even natural numbers, then `Delta=|{:(a-1,a,a+1),(b-1,b,b+1),(c-1,c,c+1):}|` is a multiple of

A

4

B

6

C

9

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the determinant \( \Delta = \begin{vmatrix} a-1 & b-1 & c-1 \\ a & b & c \\ a+1 & b+1 & c+1 \end{vmatrix} \) and show that it is a multiple of a certain number. ### Step-by-Step Solution: 1. **Set Up the Determinant**: We start with the determinant: \[ \Delta = \begin{vmatrix} a-1 & b-1 & c-1 \\ a & b & c \\ a+1 & b+1 & c+1 \end{vmatrix} \] 2. **Apply Row Operations**: We can perform row operations to simplify the determinant. Let's subtract the second row from the first row and the second row from the third row: \[ R_1 \rightarrow R_1 - R_2 \quad \text{and} \quad R_3 \rightarrow R_3 - R_2 \] This gives us: \[ \Delta = \begin{vmatrix} (a-1)-a & (b-1)-b & (c-1)-c \\ a & b & c \\ (a+1)-a & (b+1)-b & (c+1)-c \end{vmatrix} \] Simplifying this, we have: \[ \Delta = \begin{vmatrix} -1 & -1 & -1 \\ a & b & c \\ 1 & 1 & 1 \end{vmatrix} \] 3. **Factor Out Common Terms**: We can factor out \(-1\) from the first row: \[ \Delta = -1 \cdot \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ 1 & 1 & 1 \end{vmatrix} \] 4. **Evaluate the Determinant**: Notice that the first and third rows are identical. Therefore, the determinant evaluates to zero: \[ \Delta = -1 \cdot 0 = 0 \] 5. **Conclusion**: Since the value of the determinant \( \Delta \) is zero, it is a multiple of every integer. ### Final Answer: Thus, \( \Delta \) is a multiple of every integer.
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of Delta = |(1,a,b +c),(1,b,c +a),(1,c,a +b)| , is

Prove that : |{:(a+b,b+c,c+a),(c,a,b),(1,1,1):}|

If a, b and c are all different from zero and Delta = |(1 +a,1,1),(1,1 +b,1),(1,1,1 +c)| = 0 , then the value of (1)/(a) + (1)/(b) + (1)/(c) is

The value of |{:(1,1,1),(b+c,c+a,a+b),(b+c-a,c+a-b,a+b-c):}| is

If a, b, c are positive real numbers, then the least value of (a+b+c)((1)/(a)+(1)/(b)+(1)/( c )) , is

The value of |{:(1+a,b,c),(a,1+b,c),(a,b,1+c):}| is

If a ,\ b ,\ c are positive real numbers, then sqrt(a^(-1)b)\ xx\ sqrt(b^(-1)\ c)\ xx\ sqrt(c^(-1)a) is equal to: (a)\ 1 (b) a b c (c) sqrt(a b c) (d) 1/(a b c)

The determinant Delta=|(a^2(a+b),a b,a c),(a b,b^2(a+k),b c),(a c,b c,c^2(1+k))| is divisible by

if a_(1)b_(1)c_(1), a_(2)b_(2)c_(2)" and " a_(3)b_(3)c_(3) are three-digit even natural numbers and Delta = |{:(c_(1),,a_(1),,b_(1)),(c_(2),,a_(2),,b_(2)),(c_(3),,a_(3),,b_(3)):}|" then " Delta is

If 1 + (1)/(a) + (1)/(b) + (1)/(c) = 0 , then Delta = |(1 +a,1,1),(1,1 +b,1),(1,1,1 +c)| is equal to