Home
Class 12
MATHS
For |z-1|=1 , possible a r g(tan(("a r ...

For `|z-1|=1` , possible `a r g(tan(("a r g"(z-1))/2)-(2i)/z)=` `pi/2` (b) `-pi/2` (c) `(3pi)/2` (d) `-(3pi)/2`

Text Solution

Verified by Experts

The correct Answer is:
1.65
Promotional Banner

Similar Questions

Explore conceptually related problems

For |z-1|=1, show that tan{[a r g(z-1)]/2}-((2i)/z)=-i

If a r g(z)<0, then a r g(-z)-"a r g"(z) equals pi (b) -pi (d) -pi/2 (d) pi/2

The value of cos^(-1)(-1)-sin^(-1)(1) is: a. pi b. pi/2 c. (3pi)/2 d. -(3pi)/2

The argument of (1-i)/(1+i) is a. -pi/2 b. pi/2 c. (3pi)/2 d. (5pi)/2

Range of tan^(-1)((2x)/(1+x^2)) is (a) [-pi/4,pi/4] (b) (-pi/2,pi/2) (c) (-pi/2,pi/4) (d) [pi/4,pi/2]

if arg(z+a)=pi/6 and arg(z-a)=(2pi)/3 then

tan^(-1)sqrt(3)-sec^(-1)(-2) is equal to(A) pi (B) -pi/3 (C) pi/3 (D) (2pi)/3

tan^(-1)sqrt(3)-sec^(-1)(-2) is equal to(a) pi (B) -pi/3 (C) pi/3 (D) (2pi)/3

If z=sqrt(3)-2+i , then principal value of argument z is (where i=sqrt(-1) (1) -(5pi)/(12) (2) pi/(12) (3) (7pi)/(12) (4) (5pi)/(12)

If |z_(1)| = sqrt(2), |z_(2)| = sqrt(3) and |z_(1) + z_(2)| = sqrt((5-2sqrt(3))) then arg ((z_(1))/(z_(2))) (not neccessarily principal) is (a) (3pi)/(4) (b) (2pi)/(3) (c) (5pi)/(4) (d) (5pi)/(2)