Home
Class 12
MATHS
Find the sum of coefficients in the e...

Find the sum of coefficients in the
expansion of the binomial `(5p - 4q)^(n)` , where n is a
positive integer .

Text Solution

Verified by Experts

The correct Answer is:
1.65
Promotional Banner

Similar Questions

Explore conceptually related problems

Find out the sum of the coefficients in the expansion of the binomial (5p - 4q)^n , where n is a +ive integer.

(-i)^(4n+3) , where n Is a positive integer.

Find the sum of the coefficients in the expansion of (1+2x+3x^2+ n x^n)^2dot

If the sum of the coefficients in the expansion of (q+r)^(20)(1+(p-2)x)^(20) is equal to square of the sum of the coefficients in the expansion of [2rqx-(r+q)*y]^(10) , where p , r , q are positive constants, then

Find the sum of the coefficient of to middle terms in the binomial expansion of (1+x)^(2n-1)

Show that 7^(n) +5 is divisible by 6, where n is a positive integer

Find the sum of the coefficient of two middle terms in the binomial expansion of (1+x)^(2n-1)

If the sum of coefficients in the expansion of (x-2y+3z)^n is 128, then find the greatest coefficient in the expansion of (1+x)^ndot

If two consecutive terms in the expansion of (x+a)^n are equal to where n is a positive integer then ((n+1)a)/(x+a) is

If the first three terms in the expansion of (1 -ax)^n where n is a positive integer are 1,-4x and 7x^2 respectively then a =