Home
Class 12
MATHS
If a^(2)+b^(2)+c^(2)=1 where, a,b,cin R,...

If `a^(2)+b^(2)+c^(2)=1` where, a,b,`cin R`, then the maximum value of `(4a-3b)^(2) + (5b-4c)^(2)+(3c-5a)^(2)` is

Text Solution

Verified by Experts

The correct Answer is:
`50.00`
Promotional Banner

Similar Questions

Explore conceptually related problems

If a, b, c in R^(+) such that a+b+c=27 , then the maximum value of a^(2)b^(3)c^(4) is equal to

If a,b,c are positive real numbers and 2a+b+3c=1 , then the maximum value of a^(4)b^(2)c^(2) is equal to

If a b^2c^3, a^2b^3c^4,a^3b^4c^5 are in A.P. (a ,b ,c >0), then the minimum value of a+b+c is (a) 1 (b) 3 (c) 5 (d) 9

If a^2x^4+b^2y^4=c^6, then the maximum value of x y is (c^2)/(sqrt(a b)) (b) (c^3)/(a b) (c^3)/(sqrt(2a b)) (d) (c^3)/(2a b)

If a ,b ,a n dc are in H.P., then th value of ((a c+a b-b c)(a b+b c-a c))/((a b c)^2) is ((a+c)(3a-c))/(4a^2c^2) b. 2/(b c)-1/(b^2) c. 2/(b c)-1/(a^2) d. ((a-c)(3a+c))/(4a^2c^2)

If 2a+b+3c=1 and a gt 0, b gt 0, c gt 0 , then the greatest value of a^(4)b^(2)c^(2)"_____" .

If a ,b ,c ,d in R^+ such that a+b+c=18 , then the maximum value of a^2b^3c^4 is equal to a. 2^(18)xx3^2 b. 2^(18)xx3^3 c. 2^(19)xx3^2 d. 2^(19)xx3^3

Expand: (4a- 5b- 2c)^(2)

Divide : 4a^(2) + 12ab + 9b^(2) - 25c^(2) by 2a + 3b + 5c

If a,b,c are non-zero real numbers, then the minimum value of the expression ((a^(8)+4a^(4)+1)(b^(4)+3b^(2)+1)(c^(2)+2c+2))/(a^(4)b^(2)) equals