Home
Class 12
MATHS
Let vec a , vec b a n d vec c be three ...

Let ` vec a , vec b a n d vec c` be three vectors having magnitudes 1, 5and 3, respectively, such that the angel between ` vec aa n d vec bi stheta` and ` vec axx( vec axx vec b)=c` . Then `t a ntheta` is equal to a. 0 b. 2/3 c. 3/5 d. 3/4

Text Solution

Verified by Experts

The correct Answer is:
`0.75`
Promotional Banner

Similar Questions

Explore conceptually related problems

If theta is the angle between any two vectors vec a and vec b , then vec a. vec b=| vec axx vec b| when theta is equal to (a) 0 (B) pi/4 (C) pi/2 (d) pi

If vec a\ a n d\ vec b are two vectors of magnitudes 3 and (sqrt(2))/3 respectively such that vec axx vec b is a unit vector. Write the angle between vec a\ a n d\ vec bdot

Find the angle between two vectors vec a\ a n d\ vec b , if | vec axx vec b|= vec adot vec bdot

For any two vectors vec a\ a n d\ vec b , fin d\ ( vec axx vec b). vecbdot

If vec a\ a n d\ vec b are two vectors such that | vec axx vec b|=3\ a n d\ vec adot vec b=1, find the angle between vec a\ a n d\ vec b .

If vec a , vec b , vec c are unit vectors such that vec a. vec b=0= vec a. vec c and the angle between vec b and vec c is pi/3, then find the value of | vec axx vec b- vec axx vec c| .

If vec a\ a n d\ vec b are two vectors such that | vec a|=| vec axx vec b|, write the angle between vec a\ a n d\ vec bdot

If vec adot vec b= vec adot vec c\ a n d\ vec axx vec b= vec axx vec c ,\ vec a!=0, then

Find the angle between two vectors vec a\ a n d\ vec b with magnitudes 1\ a n d\ 2 respectively and when | vec axx vec b|=sqrt(3)dot

vec a , vec b , and vec c are three vectors of equal magnitude. The angel between each pair of vectors is pi//3 such that | vec a+ vec b+ vec c|=sqrt6. Then | vec a| is equal to a. 2 b. -1 c. 1 d. sqrt(6)//3