Home
Class 12
PHYSICS
An object is acted upon by the forces ve...

An object is acted upon by the forces `vec(F)_(1)=4hat(i)N` and `vec(F)_(2)=(hat(i)-hat(j))N`. If the displacement of the object is `D=(hat(i)+6hat(j)-hat(k))`m, the kinetic energy of the object

A

remains constant

B

increases by 1 J

C

decreases by 1 J

D

decreases by 2 J

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Identify the Forces We have two forces acting on the object: - \( \vec{F}_1 = 4 \hat{i} \, \text{N} \) - \( \vec{F}_2 = \hat{i} - \hat{j} \, \text{N} \) ### Step 2: Calculate the Net Force To find the net force \( \vec{F} \), we add the two forces: \[ \vec{F} = \vec{F}_1 + \vec{F}_2 = (4 \hat{i}) + (\hat{i} - \hat{j}) = (4 + 1) \hat{i} - \hat{j} = 5 \hat{i} - \hat{j} \, \text{N} \] ### Step 3: Identify the Displacement The displacement vector is given as: \[ \vec{D} = \hat{i} + 6 \hat{j} - \hat{k} \, \text{m} \] ### Step 4: Calculate the Work Done The work done \( W \) by the net force on the object is given by the dot product of the net force and the displacement: \[ W = \vec{F} \cdot \vec{D} = (5 \hat{i} - \hat{j}) \cdot (\hat{i} + 6 \hat{j} - \hat{k}) \] Calculating the dot product: \[ W = 5 \cdot 1 + (-1) \cdot 6 + 0 \cdot (-1) = 5 - 6 + 0 = -1 \, \text{J} \] ### Step 5: Relate Work to Change in Kinetic Energy According to the work-energy theorem, the work done is equal to the change in kinetic energy (\( \Delta KE \)): \[ \Delta KE = W = -1 \, \text{J} \] ### Step 6: Conclusion The kinetic energy of the object has decreased by 1 Joule. ### Final Answer The change in kinetic energy is \(-1 \, \text{J}\). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vec(F ) = (60 hat(i) + 15 hat(j) - 3 hat(k)) N and vec(V) = (2 hat(i) - 4 hat(j) + 5 hat(k)) m/s, then instantaneous power is:

If vec(A)=4hat(i)+nhat(j)-2hat(k) and vec(B)=2hat(i)+3hat(j)+hat(k) , then find the value of n so that vec(A) bot vec(B)

If vec(a) . hat(i)= vec(a).(hat(i)+ hat(j)) = vec(a). ( hat(i) + hat(j) + hat(k)) =1 , then vec(a) is equal to

Find V_(ab) in an electric field vec(E)=(2hat(i)+3hat(j)+4hat(k))N//C where vec(r)_(a)=(hat(i)-2hat(j)+hat(k))mandvec(r_(b))=(2hat(i)+hat(j)-2hat(k))m

The work done by the force vec( F ) = 6 hat(i) + 2 hat(j) N in displacing an object from vec( r_(1)) = 3 hat(i) + 8 hat( j) to vec( r_(2)) = 5 hat( i) - 4 hat(j) m , is

Find the torque of a force vec(F)=-3hat(i)+hat(j)+5hat(k) acting at the point vec(R)=7hat(i)+3hat(j)+hat(k) .

If vec(F ) = hat(i) +2 hat(j) + hat(k) and vec(V) = 4hat(i) - hat(j) + 7hat(k) what is vec(F) . vec(v) ?

Following forces start acting on a particle at rest at the origin of the co-ordinate system simultaneously vec(F)_(1)=-4hat(i)+5hat(j)+5hat(k), vec(F)_(2)=-5hat(i)+8hat(j)+6 hat(k), vec(F)_(3)=-3 hat(i)+4 hat(j)-7hat(k) and vec(F)_(4)=12hat(i)-3hat(j)-2hat(k) then the particle will move-

Find the projection of vec(b)+ vec(c ) on vec(a) where vec(a)= 2 hat(i) -2hat(j) + hat(k), vec(b)= hat(i) + 2hat(j)- 2hat(k), vec(c ) = 2hat(i) - hat(j) + 4hat(k)