Home
Class 12
PHYSICS
A force vec(F) = (2 hat(i) + 3 hat(j) + ...

A force `vec(F) = (2 hat(i) + 3 hat(j) + 4 hat(k))` N is applied to a point having position vector `vec(r) = (3 hat(i) + 2 hat(j) + hat(k))` m. Find the torque due to the force about the axis passing through origin.

Text Solution

AI Generated Solution

To find the torque due to the force about the axis passing through the origin, we will use the formula for torque, which is given by the cross product of the position vector \( \vec{r} \) and the force vector \( \vec{F} \): \[ \vec{\tau} = \vec{r} \times \vec{F} \] ### Step 1: Write down the vectors Given: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The torque of a force F = 2 hat(i) - 3 hat(j) +5 hat(k) acting at a point whose position vector r = 3 hat(i) - 3 hat(j) +5 hat(k) about the origin is

Forces 2hat(i)+hat(j), 2hat(i)-3hat(j)+6hat(k) and hat(i)+2hat(j)-hat(k) act at a point P, with position vector 4hat(i)-3hat(j)-hat(k) . Find the moment of the resultant of these force about the point Q whose position vector is 6hat(i)+hat(j)-3hat(k) .

Find the image of the point having position vector hat(i) + 3hat(j) + 4hat(k) in the plane vec(r ).(2hat(i) - hat(j) + hat(k))+ 3=0

A force vec(F)=(2hat(i)+3hat(j)-5hat(k))N acts at a point vec(r )_(1)=(2hat(i)+4hat(j)+7hat(k))m . The torque of the force about the point vec(r )_(2)=(hat(i)+2hat(j)+3hat(k))m is

Find the torque of the force vec(F)=(2hat(i)-3hat(j)+4hat(k)) N acting at the point vec(r )=(3hat(i)=2hat(j)+3hat(k)) m about the origion.

The force 7 hat i+ 3 hat j - 5 hat k acts on a particle whose position vector is hat i- hat j + hat k . What is the torque of a given force about the origin ?

A force F=2hat(i)+hat(j)-hat(k) acts at point A whose position vector is 2hat(i)-hat(j) . Find the moment of force F about the origin.

If vec(F ) = (60 hat(i) + 15 hat(j) - 3 hat(k)) N and vec(V) = (2 hat(i) - 4 hat(j) + 5 hat(k)) m/s, then instantaneous power is:

Find the image of the point having position vector hat i+2 hat j+4 hat k in the plane vec r.(2 hat i- hat j+ hat k)+3=0.

Work done by a force F on a body is W = F .s, where s is the displacement of body. Given that under a force F = (2 hat i +3 hat j +4 hat k) N a body is displaced from position vector r_1 = (2 hat i +3 hat j + hat k) m to the position vector r_2 = (hat i +hat j+ hat k) m. Find the work done by this force.