Home
Class 12
PHYSICS
Electromagnetic travel in a medium at a ...

Electromagnetic travel in a medium at a speed of `2.0xx10^8ms^-1`. The relative permitivity of the medium is 2.25. Find the relative permeability of the medium.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the relative permeability of the medium given the speed of electromagnetic waves and the relative permittivity, we can follow these steps: ### Step-by-Step Solution: 1. **Identify Given Values**: - Speed of electromagnetic wave in the medium, \( V = 2.0 \times 10^8 \, \text{m/s} \) - Relative permittivity of the medium, \( \epsilon_r = 2.25 \) - Speed of light in vacuum, \( C = 3.0 \times 10^8 \, \text{m/s} \) 2. **Use the Formula for Wave Speed**: The speed of electromagnetic waves in a medium is given by the formula: \[ V = \frac{C}{\sqrt{\mu_r \epsilon_r}} \] where \( \mu_r \) is the relative permeability and \( \epsilon_r \) is the relative permittivity. 3. **Rearranging the Formula**: To find the relative permeability \( \mu_r \), we can rearrange the formula: \[ V^2 = \frac{C^2}{\mu_r \epsilon_r} \] This can be rearranged to express \( \mu_r \): \[ \mu_r = \frac{C^2}{V^2 \epsilon_r} \] 4. **Substituting the Known Values**: Now, substitute the known values into the equation: \[ \mu_r = \frac{(3.0 \times 10^8)^2}{(2.0 \times 10^8)^2 \times 2.25} \] 5. **Calculating the Squares**: Calculate \( (3.0 \times 10^8)^2 \) and \( (2.0 \times 10^8)^2 \): \[ (3.0 \times 10^8)^2 = 9.0 \times 10^{16} \] \[ (2.0 \times 10^8)^2 = 4.0 \times 10^{16} \] 6. **Substituting Back**: Substitute these values back into the equation for \( \mu_r \): \[ \mu_r = \frac{9.0 \times 10^{16}}{4.0 \times 10^{16} \times 2.25} \] 7. **Calculating the Denominator**: Calculate the denominator: \[ 4.0 \times 10^{16} \times 2.25 = 9.0 \times 10^{16} \] 8. **Final Calculation**: Now substitute this back into the equation: \[ \mu_r = \frac{9.0 \times 10^{16}}{9.0 \times 10^{16}} = 1 \] 9. **Conclusion**: Therefore, the relative permeability of the medium is: \[ \mu_r = 1 \]
Promotional Banner