Home
Class 12
MATHS
Let f(x)=((x-1)^(3)(x+2)^(4)(x-3)^(5)(x+...

Let `f(x)=((x-1)^(3)(x+2)^(4)(x-3)^(5)(x+6))/(x^(2)(x-7)^(3))`. Solve the following inequality
`f(x)le0`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=((x-1)^(3)(x+2)^(4)(x-3)^(5)(x+6))/(x^(2)(x-7)^(3)) . Solve the following inequality f(x)lt0

If f(x)=((x-1)^3(x+2)^4(x-3)^5(x+6))/(x^2(x-7)^3) , Solve the following inequality f >= 0

Let F(x)=((sinx-1/2)(lnx-1)^4(x-2)^3(tanx-sqrt(3))^5)/((e^x-e^2)(x-3)^6(sin^2x-1)) solve the following inequalities for x in (0,2pi)

Solve the following system of inequation 4x+5gt3x,-(x+3)+4le-2x+5

Solve the inequation : -3le (4-7x)/2 le18

Solve ((x-5)^(2)(x+2)^(3)(x-4))/((x-3)^(4))le0

If f(x)=(2x)/(5)+(7)/(3), f^(-1)(x)=

"Let "f(x)=((2^(x)+2^(-x))sin x sqrt(tan^(-1)(x^(2)-x+1)))/((7x^(2)+3x+1)^(3)) . Then find the value of f'(0).

Solve ((x-3)(x+5)(x-7))/(|x-4|(x+6))le0

Solve the inequation: 3x+17le2(1-x)