Home
Class 12
MATHS
Find the domain of function f(x)=(1)/(ab...

Find the domain of function `f(x)=(1)/(abs(x-1)+abs(7-x)-6)` where `[*]` denotes the greatest integral function .

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=1/([abs(x-2}]+[abs(x-10)]-8) where [*] denotes the greatest integer function.

The domain of the function f(x)=(1)/(sqrt((x)-[x])) where [*] denotes the greatest integer function is

Find the domain of the function f(x)=(1)/([x]^(2)-7[x]-8) , where [.] represents the greatest integer function.

Domain of the function f(x)=(1)/([sinx-1]) (where [.] denotes the greatest integer function) is

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

The domain of the function f(x)=1/(sqrt([x]^2-2[x]-8)) is, where [*] denotes greatest integer function

Find the domain of the function f(x)=log_(e)(x-[x]) , where [.] denotes the greatest integer function.

The domain of function f (x) = log _([x+(1)/(2)])(2x ^(2) + x-1), where [.] denotes the greatest integer function is :

Find the range of f(x)=[abs(sinx)+abs(cosx)] , where [*] denotes the greatest integer function.

The domain of the function f(x)=(1)/(sqrt([x]^(2)-[x]-20)) is (where, [.] represents the greatest integer function)