Home
Class 12
MATHS
Check whether the function defined by f(...

Check whether the function defined by `f(x+lambda)=1+sqrt(2f(x)-f^2(x))` `AAx in R` is periodic or not. If yes, then find its period `(lambda>0)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the domain of the function f(x) defined by f(x)=sqrt(4-x)+1/(sqrt(x^2-1)) .

Find the domain of the function f(x) defined by f(x)=sqrt(4-x)+1/(sqrt(x^2-1)) .

Discuss whether the function f(x)="sin"(cosx+x) is period or not. If yes, then what is its period?

Find the domain of the real function f(x) defined by f(x)=sqrt((1-|x|)/(2-|x|))dot

R rarr R be defined by f(x)=((e^(2x)-e^(-2x)))/2 . is f(x) invertible. If yes then find f^(-1)(x)

R rarr R be defined by f(x)=((e^(2x)-e^(-2x)))/2 . is f(x) invertible. If yes then find f^(-1)(x)

The function f:R rarr R defined as f(x)=(x^(2)-x+1)/(x^(2)+x+1) is

A function f is defined by f(x) = x^(2) + 1 . Find f(0), f(5), f(10).

If f(3x+2)+f(3x+29)=0 AAx in R , then the period of f(x) is

If f: Rrarr[0,oo) is a function such that f(x-1)+f(x+1)=sqrt(3)f(x), then prove that f(x) is periodic and find its period.