Home
Class 12
MATHS
Consider the function f(x) satisfying th...

Consider the function `f(x)` satisfying the identity `f(x) +f((x-1)/(x))=1+x AA x in R -{0,1}, and g(x)=2f(x)-x+1.`
The domain of `y=sqrt(g(x))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the function f(x) satisfyig the identity f(x)+f((x-1)/x)=1+x, AA x in R-{0,1} and g(x)=2f(x)-x+1 Then range of y=g(x) is:

The function f (x) satisfy the equation f (1-x)+ 2f (x) =3x AA x in R, then f (0)=

Consider the function y =f(x) satisfying the condition f(x+1/x)=x^2+1/(x^2)(x!=0) . Then the

A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y), AA x, y in R . If f'(0) = - 1, then

Consider the function f:R -{1} given by f (x)= (2x)/(x-1) Then f^(-1)(x) =

The function f(x) satisfies the equation f(x + 1) + f(x-1) = sqrt3 f(x) . then the period of f(x) is

If a function 'f' satisfies the relation f(x)f^('')(x)-f(x)f^(')(x) -f^(')(x)^(2)=0 AA x in R and f(0)=1=f^(')(0) . Then find f(x) .

If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2) AA x in R and f(0)=f'(0)=1, then The value of lim_(x to -oo) f(x) is

consider the function f(x) = 1(1+(1)/(x))^(x) The domain of f(x) is

consider the function f(x) = 1(1+(1)/(x))^(x) The domain of f(x) is