Home
Class 12
MATHS
Given f(x)=log(10)((1+x)/(1-x)) and g(x)...

Given `f(x)=log_(10)((1+x)/(1-x)) and g(x)=(3x+x^(3))/(1+3x^(2))`, then fog(x) equals

A

`-f(x)`

B

`3f(x)`

C

`[f(x)]^(2)`

D

none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=log((1+x)/(1-x))a n dg(x)=((3x+x^3)/(1+3x^2)) , then f(g(x)) is equal to (a) f(3x) (b) {f(x)}^3 (c) 3f(x) (d) -f(x)

If f(x) = 3x + 1 and g(x) = x^(2) - 1 , then (f + g) (x) is equal to

If f(x) = log_(e) ((1-x)/(1+x)) , then f((2x)/(1 + x^(2))) is equal to :

If f(x)=cot^(-1) ((3x-x^3)/(1-3x^2)) and g(x)=cos^(-1)((1-x^2)/(1+x^2)) then lim_(x->a) (f(x)-f(a))/(g(x)-g(a))

If f(x)=sqrt(x^(2)-1) and g(x)=(10)/(x+2) , then g(f(3)) =

If f(x) = (x + 1)/(x-1) and g(x) = (1)/(x-2) , then (fog)(x) is discontinuous at

Find domain of f(x)=log_(10)(1+x^(3)) .

If f(x) = log ((1+x)/(1-x)) , where -1 lt x lt 1 then f((3x+x^(3))/(1+3x^(2))) - f((2x)/(1+x^(2))) is equal to

Let f(x) = log_(e) x and g(x) =(x^(4) -2x^(3) + 3x^(2) - 2x+2)/(2x^(2) - 2x + 1) Then , the domain of fog (x) is

If f (x) = cot ^(-1)((3x -x ^(3))/( 1- 3x ^(2)))and g (x) = cos ^(-1) ((1-x ^(2))/(1+x^(2))) then lim _(xtoa)(f(x) - f(a))/( g(x) -g (a)), 0 ltalt 1/2 is :