Home
Class 12
MATHS
Find the period of f(x)=abs(sinx)+abs(co...

Find the period of `f(x)=abs(sinx)+abs(cosx)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the range of f(x)=[abs(sinx)+abs(cosx)] , where [*] denotes the greatest integer function.

The period of f(x)=cos(abs(sinx)-abs(cosx)) is

Identify the correct statement the fundamental period of f(x)=cos(sinx)+cos(cosx) is pi

Find the period of "cos"(cosx)+cos(sinx)dot

The period of f(x)=cosx+{x} , is

Find the derivative of f(x)=sinx-cosx

Period of f(x)=sin((cosx)+x) is

The range of the function f(x)=1/abs(sinx)+1/abs(cosx) is

If f(x) is of period of 7 and g(x) is of period of 11. Then find the period of F(x)=abs({:(f(x),f(x//5)),(g(x),g(x//13)):})

The period of f(x)=(1)/(2){(| sinx|)/(cos x)+(|cosx|)/(sinx)} , is