Home
Class 12
MATHS
Solve the following inequailities : ab...

Solve the following inequailities :
`abs(x-1)+2abs(x+1)+abs(x-2)le8`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( |x - 1| + 2|x + 1| + |x - 2| \leq 8 \), we will break it down into intervals based on the critical points where the expressions inside the absolute values change sign. The critical points are \( x = -2, -1, 1, 2 \). ### Step 1: Identify the intervals The critical points divide the number line into the following intervals: 1. \( (-\infty, -2) \) 2. \( [-2, -1) \) 3. \( [-1, 1) \) 4. \( [1, 2) \) 5. \( [2, \infty) \) ### Step 2: Analyze each interval #### Interval 1: \( x < -2 \) In this interval, all expressions are negative: - \( |x - 1| = -(x - 1) = -x + 1 \) - \( |x + 1| = -(x + 1) = -x - 1 \) - \( |x - 2| = -(x - 2) = -x + 2 \) Substituting these into the inequality: \[ -x + 1 + 2(-x - 1) + (-x + 2) \leq 8 \] This simplifies to: \[ -x + 1 - 2x - 2 - x + 2 \leq 8 \] \[ -4x + 1 \leq 8 \] \[ -4x \leq 7 \quad \Rightarrow \quad x \geq -\frac{7}{4} \] Since this interval is \( (-\infty, -2) \), we take the intersection: \[ -\frac{7}{4} \text{ is not in } (-\infty, -2) \quad \Rightarrow \quad \text{No solutions in this interval.} \] #### Interval 2: \( -2 \leq x < -1 \) Here: - \( |x - 1| = -x + 1 \) - \( |x + 1| = -x - 1 \) - \( |x - 2| = -x + 2 \) Substituting: \[ -x + 1 + 2(-x - 1) + (-x + 2) \leq 8 \] This simplifies to: \[ -x + 1 - 2x - 2 - x + 2 \leq 8 \] \[ -4x + 1 \leq 8 \] \[ -4x \leq 7 \quad \Rightarrow \quad x \geq -\frac{7}{4} \] Since \( -\frac{7}{4} \) is not in \( [-2, -1) \), we have: \[ \text{No solutions in this interval.} \] #### Interval 3: \( -1 \leq x < 1 \) Here: - \( |x - 1| = -x + 1 \) - \( |x + 1| = x + 1 \) - \( |x - 2| = -x + 2 \) Substituting: \[ -x + 1 + 2(x + 1) + (-x + 2) \leq 8 \] This simplifies to: \[ -x + 1 + 2x + 2 - x + 2 \leq 8 \] \[ 0x + 5 \leq 8 \quad \Rightarrow \quad 5 \leq 8 \] This is always true, so: \[ x \in [-1, 1) \] #### Interval 4: \( 1 \leq x < 2 \) Here: - \( |x - 1| = x - 1 \) - \( |x + 1| = x + 1 \) - \( |x - 2| = -x + 2 \) Substituting: \[ (x - 1) + 2(x + 1) + (-x + 2) \leq 8 \] This simplifies to: \[ x - 1 + 2x + 2 - x + 2 \leq 8 \] \[ 2x + 3 \leq 8 \quad \Rightarrow \quad 2x \leq 5 \quad \Rightarrow \quad x \leq \frac{5}{2} \] Since \( \frac{5}{2} \) is greater than \( 2 \), we take the intersection: \[ x \in [1, 2) \] #### Interval 5: \( x \geq 2 \) Here: - \( |x - 1| = x - 1 \) - \( |x + 1| = x + 1 \) - \( |x - 2| = x - 2 \) Substituting: \[ (x - 1) + 2(x + 1) + (x - 2) \leq 8 \] This simplifies to: \[ x - 1 + 2x + 2 + x - 2 \leq 8 \] \[ 4x - 1 \leq 8 \quad \Rightarrow \quad 4x \leq 9 \quad \Rightarrow \quad x \leq \frac{9}{4} \] Since \( \frac{9}{4} < 2 \), we take the intersection: \[ \text{No solutions in this interval.} \] ### Final Solution Combining all valid intervals, we find: \[ x \in [-1, 2) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following inequailities : 4abs(x^(2)-1)+abs(x^(2)-4)ge6

Solve the following inequalities for real values of x: abs(x-1)+abs(2x-3)=abs(3x-4)

Solve the following inequalities for real values of x: abs(x-1)lt2

Solve the following inequalities for real values of x: abs(x-3)ge2

Solve the inequation: 1le|x+1|le2

Solve abs(x/(x-1))+abs(x)=x^(2)/abs(x-1) .

Solve the following quations by using qardratic formula: 12abx^(2)-(9a^(2)-8b^(2))x-6ab=0

Solve the system of equations, " " abs(x^(2)-2x)+y=1, x^(2)+abs(y)=1.

Solve the equation abs(2x-1)=3absx+2x

Multiply : (ab - 1)(3-2ab)