Home
Class 12
MATHS
Solve the following inequailities : 4a...

Solve the following inequailities :
`4abs(x^(2)-1)+abs(x^(2)-4)ge6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( 4|x^2 - 1| + |x^2 - 4| \geq 6 \), we will analyze the expression by considering the critical points where the expressions inside the absolute values change sign. ### Step 1: Identify Critical Points The expressions inside the absolute values are \( x^2 - 1 \) and \( x^2 - 4 \). We find the roots: - \( x^2 - 1 = 0 \) gives \( x = \pm 1 \) - \( x^2 - 4 = 0 \) gives \( x = \pm 2 \) Thus, the critical points are \( -2, -1, 1, 2 \). These points divide the number line into intervals: - \( (-\infty, -2) \) - \( (-2, -1) \) - \( (-1, 1) \) - \( (1, 2) \) - \( (2, \infty) \) ### Step 2: Analyze Each Interval **Interval 1: \( (-\infty, -2) \)** - Here, \( x^2 - 1 \geq 0 \) and \( x^2 - 4 \geq 0 \). - Therefore, \( |x^2 - 1| = x^2 - 1 \) and \( |x^2 - 4| = x^2 - 4 \). - The inequality becomes: \[ 4(x^2 - 1) + (x^2 - 4) \geq 6 \] Simplifying: \[ 4x^2 - 4 + x^2 - 4 \geq 6 \implies 5x^2 - 8 \geq 6 \implies 5x^2 \geq 14 \implies x^2 \geq \frac{14}{5} \] Thus, \( x \leq -\sqrt{\frac{14}{5}} \) or \( x \geq \sqrt{\frac{14}{5}} \). **Interval 2: \( (-2, -1) \)** - Here, \( x^2 - 1 \geq 0 \) and \( x^2 - 4 < 0 \). - Thus, \( |x^2 - 1| = x^2 - 1 \) and \( |x^2 - 4| = -(x^2 - 4) = 4 - x^2 \). - The inequality becomes: \[ 4(x^2 - 1) + (4 - x^2) \geq 6 \] Simplifying: \[ 4x^2 - 4 + 4 - x^2 \geq 6 \implies 3x^2 \geq 6 \implies x^2 \geq 2 \implies x \leq -\sqrt{2} \text{ or } x \geq \sqrt{2} \] However, in this interval, we only consider \( x \leq -1 \). **Interval 3: \( (-1, 1) \)** - Here, \( x^2 - 1 < 0 \) and \( x^2 - 4 < 0 \). - Thus, \( |x^2 - 1| = -(x^2 - 1) = 1 - x^2 \) and \( |x^2 - 4| = 4 - x^2 \). - The inequality becomes: \[ 4(1 - x^2) + (4 - x^2) \geq 6 \] Simplifying: \[ 4 - 4x^2 + 4 - x^2 \geq 6 \implies -5x^2 + 8 \geq 6 \implies -5x^2 \geq -2 \implies x^2 \leq \frac{2}{5} \] Thus, \( -\sqrt{\frac{2}{5}} \leq x \leq \sqrt{\frac{2}{5}} \). **Interval 4: \( (1, 2) \)** - Here, \( x^2 - 1 \geq 0 \) and \( x^2 - 4 < 0 \). - Thus, \( |x^2 - 1| = x^2 - 1 \) and \( |x^2 - 4| = 4 - x^2 \). - The inequality becomes: \[ 4(x^2 - 1) + (4 - x^2) \geq 6 \] Simplifying: \[ 4x^2 - 4 + 4 - x^2 \geq 6 \implies 3x^2 \geq 6 \implies x^2 \geq 2 \implies x \geq \sqrt{2} \] In this interval, we consider \( 1 < x < 2 \). **Interval 5: \( (2, \infty) \)** - Here, \( x^2 - 1 \geq 0 \) and \( x^2 - 4 \geq 0 \). - Thus, \( |x^2 - 1| = x^2 - 1 \) and \( |x^2 - 4| = x^2 - 4 \). - The inequality becomes: \[ 4(x^2 - 1) + (x^2 - 4) \geq 6 \] Simplifying: \[ 4x^2 - 4 + x^2 - 4 \geq 6 \implies 5x^2 - 8 \geq 6 \implies 5x^2 \geq 14 \implies x^2 \geq \frac{14}{5} \] Thus, \( x \geq \sqrt{\frac{14}{5}} \). ### Step 3: Combine Results Now we combine the results from each interval: 1. From \( (-\infty, -2) \): \( x \leq -\sqrt{\frac{14}{5}} \) 2. From \( (-2, -1) \): \( x \leq -\sqrt{2} \) 3. From \( (-1, 1) \): \( -\sqrt{\frac{2}{5}} \leq x \leq \sqrt{\frac{2}{5}} \) 4. From \( (1, 2) \): \( x \geq \sqrt{2} \) 5. From \( (2, \infty) \): \( x \geq \sqrt{\frac{14}{5}} \) ### Final Solution The final solution set is: \[ x \in (-\infty, -\sqrt{\frac{14}{5}}] \cup [-\sqrt{2}, \sqrt{2}] \cup [\sqrt{2}, \infty) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following inequailities : abs(x-1)+2abs(x+1)+abs(x-2)le8

Solve the following inequalities for real values of x: abs(x-3)ge2

Solve the following inequality (x + 8)/(x -2) ge 0

Solve the following inequalities for real values of x: abs(x-1)lt2

Solve the following inequalities for real values of x: abs(x-1)+abs(2x-3)=abs(3x-4)

Solve the linear inequality |x-2|ge6 .

Solve for x in the following equations : (2x+6(9-2x))/(x-4)=-3

Solve each of the following equations : (x^(2)+5x+4)(x^(2)+5x+6)=120

Solve the following inequlaities 7x +15 ge 9 - 4x -5 le ""(2-3x)/(4) le 9 5x- 6 le 4 " and " 7- 3x ge 2x

Solve each of the following equatins : (x+3)/(x-2)-(1-x)/(x)=4(1)/(4)