Home
Class 12
MATHS
If y=3[x]+1=2[x-3]+5, find the value of ...

If `y=3[x]+1=2[x-3]+5,` find the value of [x+y]

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( y = 3[x] + 1 = 2[x - 3] + 5 \), we will follow these steps: ### Step 1: Set the equations equal to each other We start with the two expressions for \( y \): \[ 3[x] + 1 = 2[x - 3] + 5 \] ### Step 2: Simplify the right side First, simplify the right side of the equation: \[ 2[x - 3] + 5 = 2[x] - 6 + 5 = 2[x] - 1 \] Now the equation looks like this: \[ 3[x] + 1 = 2[x] - 1 \] ### Step 3: Rearrange the equation Next, we can rearrange the equation to isolate the greatest integer function: \[ 3[x] - 2[x] = -1 - 1 \] This simplifies to: \[ [x] = -2 \] ### Step 4: Substitute back to find \( y \) Now that we have \( [x] = -2 \), we can substitute this back into the expression for \( y \): \[ y = 3[-2] + 1 = -6 + 1 = -5 \] ### Step 5: Calculate \( [x + y] \) Now we need to find \( [x + y] \): \[ x + y = [x] + y = -2 + (-5) = -7 \] ### Final Answer Thus, the value of \( [x + y] \) is: \[ \boxed{-7} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Given that y=2[x]+3 and y=3[x-2]+5 then find the value of [x+y]

If 7x - 15y = 4x + y , find the value of x: y . Hence, use componendo and dividendo to find the values of : (i) (9x + 5y)/(9x - 5y) (iI) (3x^(2) + 2y^(2))/(3x^(2) - 2y^(2))

If x [2 3]+y[-1 1]=[10 5] , find the value of x and y

If x=2 and y=5 find the values of : 2x+3y

If x=2 and y=5 find the values of : 3x-4y

If (x+1,\ 1)=(3,\ y-2) , find the value of x and y .

If (x+y, x-y) = (3, 1), find the values of x and y.

If (x+y, 5) = (10, y-3), find the values of x and y.

If x[[2] ,[3]]+y[[-1] ,[1]]=[[10] ,[5]] , find the values of x and y.

If [2x+1 5x0y^2+1]=[x+3 10 0 26] , find the value of (x+y) .