Home
Class 12
MATHS
Find the range of f(x)=[abs(sinx)+abs(co...

Find the range of `f(x)=[abs(sinx)+abs(cosx)]`, where `[*]` denotes the greatest integer function.

Text Solution

Verified by Experts

The correct Answer is:
`[1,sqrt2]`
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=1/([abs(x-2}]+[abs(x-10)]-8) where [*] denotes the greatest integer function.

Find the period of f(x)=abs(sinx)+abs(cosx) .

Find the domain and range of f(x)=log[ cos|x|+1/2] ,where [.] denotes the greatest integer function.

Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] denotes the greatest integer function, is

The range of the function f(x) =[sinx+cosx] (where [x] denotes the greatest integer function) is f(x) in :

The range of f(x)=(2+x-[x])/(1-x+[x]) .where [ ] denotes the greatest integer function is

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

Find the domain of function f(x)=(1)/(abs(x-1)+abs(7-x)-6) where [*] denotes the greatest integral function .

The range of f(x)=[|sin x|+|cosx"|""]"dot Where [.] denotes the greatest integer function, is {0} (b) {0,1} (c) {1} (d) none of these

f(x)=[sinx] where [.] denotest the greatest integer function is continuous at: