Home
Class 12
MATHS
Let f(x)=abs(sinx),0lexlepi and g(x)=abs...

Let `f(x)=abs(sinx),0lexlepi` and `g(x)=abs(cosx)-pi//2lexlepi//2`. Find f+g,f.g and their respective domains.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=2x-sinx and g(x) = 3^(sqrtx) . Then

f(x)=sin^2x+cos^4x+2 and g(x)=cos(cosx)+cos(sinx) Also let period f(x) and g(x) be T_1 and T_2 respectively then

f(x)=sin^2x+cos^4x+2 and g(x)=cos(cosx)+cos(sinx) Also let period f(x) and g(x) be T_1 and T_2 respectively then

Let f(x)=[x] and g(x)=|x| . Find (f+2g)(-1)

Let f(X)=e^(x),R^(+)toR and g(x)=sinx,[-(pi)/2,(pi)/2]to[-1,1] Find domain and range of fog(X)

Let f(x)=sqrt(6-x),g(x)=sqrt(x-2) . Find f+g,f-g,f.g and f/g.

Let f(x)=(sinx)/x and g(x)=|x.f(x)|+||x-2|-1|. Then, in the interval (0,3pi) g(x) is :

Let f'(sinx)lt0andf''(sinx)gt0,AAx in (0,(pi)/(2)) and g(x)=f(sinx)+f(cosx), then find the interval in which g(x) is increasing and decreasing.

Let g(x)=f(sin x)+ f(cosx), then g(x) is decreasing on:

f(x)=1/abs(x), g(x)=sqrt(x^(-2))