Home
Class 12
MATHS
Let f(x)={{:(1+x,0lexle1).(3-x,1ltxltoo)...

Let `f(x)={{:(1+x,0lexle1).(3-x,1ltxltoo):}`
Define f(f(x)). AIso obtain domain and range of f(f(x)).

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to define the function \( f(f(x)) \) based on the given piecewise function \( f(x) \) and then determine its domain and range. ### Step 1: Define the function \( f(x) \) The function \( f(x) \) is defined as follows: \[ f(x) = \begin{cases} 1 + x & \text{if } 0 \leq x \leq 1 \\ 3 - x & \text{if } x > 1 \end{cases} \] ### Step 2: Determine \( f(f(x)) \) We will evaluate \( f(f(x)) \) by considering the two cases for \( f(x) \). #### Case 1: \( 0 \leq x \leq 1 \) In this case, \( f(x) = 1 + x \). We need to find the range of \( 1 + x \): - When \( x = 0 \), \( f(x) = 1 \). - When \( x = 1 \), \( f(x) = 2 \). Thus, for \( 0 \leq x \leq 1 \), \( f(x) \) ranges from \( 1 \) to \( 2 \). Now we need to evaluate \( f(f(x)) = f(1 + x) \): - Since \( 1 + x \) falls within the range \( [1, 2] \), we apply the second case of \( f(x) \): \[ f(1 + x) = 3 - (1 + x) = 2 - x \] So, for \( 0 \leq x \leq 1 \): \[ f(f(x)) = 2 - x \] #### Case 2: \( x > 1 \) In this case, \( f(x) = 3 - x \). We need to find the range of \( 3 - x \): - As \( x \) increases beyond \( 1 \), \( 3 - x \) decreases: - When \( x = 1 \), \( f(x) = 2 \). - As \( x \to \infty \), \( f(x) \to -\infty \). Thus, for \( x > 1 \), \( f(x) \) ranges from \( 2 \) to \( -\infty \). Now we need to evaluate \( f(f(x)) = f(3 - x) \): - Since \( 3 - x < 2 \) for \( x > 1 \), we apply the first case of \( f(x) \): \[ f(3 - x) = 1 + (3 - x) = 4 - x \] So, for \( x > 1 \): \[ f(f(x)) = 4 - x \] ### Step 3: Combine the results We have: \[ f(f(x)) = \begin{cases} 2 - x & \text{if } 0 \leq x \leq 1 \\ 4 - x & \text{if } x > 1 \end{cases} \] ### Step 4: Determine the domain of \( f(f(x)) \) The domain of \( f(f(x)) \) is the same as the domain of \( f(x) \), which is \( [0, \infty) \). ### Step 5: Determine the range of \( f(f(x)) \) - For \( 0 \leq x \leq 1 \): - The minimum value occurs at \( x = 1 \): \( f(f(1)) = 1 \). - The maximum value occurs at \( x = 0 \): \( f(f(0)) = 2 \). - Thus, the range for this case is \( [1, 2] \). - For \( x > 1 \): - As \( x \to 1 \), \( f(f(1)) = 1 \). - As \( x \to \infty \), \( f(f(x)) \to -\infty \). - Thus, the range for this case is \( (-\infty, 3) \). Combining both ranges, the overall range of \( f(f(x)) \) is \( (-\infty, 2] \). ### Final Result - **Function**: \[ f(f(x)) = \begin{cases} 2 - x & \text{if } 0 \leq x \leq 1 \\ 4 - x & \text{if } x > 1 \end{cases} \] - **Domain**: \( [0, \infty) \) - **Range**: \( (-\infty, 2] \)
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=x/(1+x^(2)) . Find domain and range of f(x).

Find the domain and range of f(x)=|x-1|

Find the domain and range of f(x)=|x-1|

Find the domain and range of f(x)=(1)/(2-sin3x).

If f(x)={{:(x",",0lexle1),(x+a",",xgt1):} then

Let f(x) ={{:(1+x,0lexle2),(3-x,2ltxle3):} then discuss the continuity of g(x) =f(f(x)).

If f(x)={(x,,,0lexle1),(2-x,,,1ltxle2):} then point of discontinuity fo f(f(x)) is [0,2] is,

If f(x) is defined on (0,1) , then the domain of f(sinx) is

The function f defined f(x){(x[x],0lexle2),((x-1)x,2lexlt3):} , Then Lf'(2) =

The function f(x) is defined in [0,1] . Find the domain of f(tanx).