Home
Class 12
MATHS
Find the domain of the function, f(x)=...

Find the domain of the function,
`f(x)=log{log_(abs(sinx)){x^(2)-8x+23)-(3)/(log_(2)abs(sinx))}`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \[ f(x) = \log\left(\frac{\log_{|\sin x|}(x^2 - 8x + 23) - 3}{\log_2 |\sin x|}\right), \] we need to ensure that all the components of the function are defined and valid. ### Step 1: Conditions for the logarithm 1. **Base of the logarithm**: The base \( |\sin x| \) must be positive and not equal to 1. This gives us two conditions: - \( |\sin x| > 0 \) which implies \( \sin x \neq 0 \). - \( |\sin x| \neq 1 \) which implies \( \sin x \neq \pm 1 \). From \( \sin x \neq 0 \), we have: \[ x \neq n\pi \quad \text{for } n \in \mathbb{Z}. \] From \( \sin x \neq \pm 1 \), we have: \[ x \neq \frac{(2n+1)\pi}{2} \quad \text{for } n \in \mathbb{Z}. \] ### Step 2: Argument of the logarithm 2. **Argument of the logarithm**: The argument of the logarithm must be greater than zero: \[ \frac{\log_{|\sin x|}(x^2 - 8x + 23) - 3}{\log_2 |\sin x|} > 0. \] This implies: \[ \log_{|\sin x|}(x^2 - 8x + 23) - 3 > 0 \quad \text{and} \quad \log_2 |\sin x| > 0. \] From \( \log_2 |\sin x| > 0 \), we have: \[ |\sin x| > 1 \quad \text{(which is impossible)}. \] Therefore, we only need to consider \( \log_{|\sin x|}(x^2 - 8x + 23) > 3 \). ### Step 3: Solve the inequality 3. **Solving the inequality**: \[ \log_{|\sin x|}(x^2 - 8x + 23) > 3 \implies x^2 - 8x + 23 > |\sin x|^3. \] The quadratic \( x^2 - 8x + 23 \) is always positive since its discriminant is negative: \[ D = (-8)^2 - 4 \cdot 1 \cdot 23 = 64 - 92 = -28 < 0. \] Thus, \( x^2 - 8x + 23 > 0 \) for all \( x \). ### Step 4: Final domain 4. **Combining conditions**: The conditions we have are: - \( x \neq n\pi \) for \( n \in \mathbb{Z} \). - \( x \neq \frac{(2n+1)\pi}{2} \) for \( n \in \mathbb{Z} \). Therefore, the domain of the function can be expressed as: \[ \text{Domain } f(x) = \mathbb{R} \setminus \{ n\pi, \frac{(2n+1)\pi}{2} \mid n \in \mathbb{Z} \}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the domain of the function log|4-x^(2)|.

The domain of the function f(x)=log_(e){log_(|sinx|)(x^(2)-8x+23)-(3)/(log_(2)|sinx|)} contains which of the following interval (s) ?

The domain of the function f(x)=sqrt(log((1)/(|sinx|)))

Find the domain of the function : f(x)=sin^(-1)((log)_2x)

Find the domain of the function : f(x)=sin^(-1)((log)_2x)

Find the domain of the following functions. f(x)=log_(3+x)(x^(2)-1)

The domain of the function f(x)=(log)_(3+x)(x^2-1) is

The domain of the function f(x)=log_(3)[1-log_(6)(x^(2)-7x+16)] is

The domain of the function f(x)=sqrt( log_(2) sinx ) , is

Find the domain of the function f(x)=log_10((log_10 x^2)-5log_10 x+6)