Home
Class 12
MATHS
let f(x) be a polynomial satisfying f(x)...

let f(x) be a polynomial satisfying f(x) : f(1/x) = f(x) + f(1/x) for all `X in R` :- {O} and f(5) =126, then find f(3).

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the polynomial \( f(x) \) that satisfies the condition \( f(x) \cdot f\left(\frac{1}{x}\right) = f(x) + f\left(\frac{1}{x}\right) \) for all \( x \in \mathbb{R} \setminus \{0\} \), and also satisfies \( f(5) = 126 \). We will then use this polynomial to find \( f(3) \). ### Step-by-Step Solution: 1. **Assume the Form of the Polynomial:** We assume that \( f(x) \) can be expressed in the form \( f(x) = x^n + c \), where \( n \) is a non-negative integer and \( c \) is a constant. 2. **Substituting into the Given Condition:** Substitute \( f(x) \) and \( f\left(\frac{1}{x}\right) \) into the condition: \[ f\left(\frac{1}{x}\right) = \left(\frac{1}{x}\right)^n + c = \frac{1}{x^n} + c \] Now, substituting into the equation: \[ f(x) \cdot f\left(\frac{1}{x}\right) = \left(x^n + c\right)\left(\frac{1}{x^n} + c\right) \] Expanding this gives: \[ = x^n \cdot \frac{1}{x^n} + cx^n + c\frac{1}{x^n} + c^2 = 1 + cx^n + \frac{c}{x^n} + c^2 \] 3. **Finding \( f(x) + f\left(\frac{1}{x}\right) \):** Now, calculate \( f(x) + f\left(\frac{1}{x}\right) \): \[ f(x) + f\left(\frac{1}{x}\right) = \left(x^n + c\right) + \left(\frac{1}{x^n} + c\right) = x^n + \frac{1}{x^n} + 2c \] 4. **Setting the Two Expressions Equal:** Set the two expressions equal to each other: \[ 1 + cx^n + \frac{c}{x^n} + c^2 = x^n + \frac{1}{x^n} + 2c \] 5. **Equating Coefficients:** For the equation to hold for all \( x \), the coefficients of \( x^n \) and \( \frac{1}{x^n} \) must match. This gives us: - From \( cx^n = x^n \), we find \( c = 1 \). - From \( \frac{c}{x^n} = \frac{1}{x^n} \), we confirm \( c = 1 \). 6. **Finding the Polynomial:** Thus, we have: \[ f(x) = x^n + 1 \] Since \( c = 1 \) and we need to determine \( n \). 7. **Using the Given Condition \( f(5) = 126 \):** Substitute \( x = 5 \): \[ f(5) = 5^n + 1 = 126 \] This simplifies to: \[ 5^n = 125 \implies 5^n = 5^3 \implies n = 3 \] 8. **Final Form of the Polynomial:** Therefore, the polynomial is: \[ f(x) = x^3 + 1 \] 9. **Finding \( f(3) \):** Now, we substitute \( x = 3 \): \[ f(3) = 3^3 + 1 = 27 + 1 = 28 \] ### Final Answer: Thus, \( f(3) = 28 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) is a polynomial satisfying f(x).f(y) = f(x) +f(y) + f(xy) - 2 for all x, y and f(2) = 1025, then the value of lim_(x->2) f'(x) is

Let f(x) be a polynomial function satisfying f(x)+f((1)/(x))=f(x)f((1)/(x))" for all "xne0. If f(5)=126" and a,b,c are in G.P., then"f'(a),f'(b),f'(c) are in

Let f(x) be a polynomial satisfying f(0)=2 , f'(0)=3 and f''(x)=f(x) then f(4) equals

Let f(x) be a polynomial satisfying f(0)=2 , f'(0)=3 and f''(x)=f(x) then f(4) equals

If f(x) is a polynomial in x and f(x).f(1/x)=f(x)+f(1/x) for all x,y and f(2)=33, then f(x) is

Let f(x) be a function satisfying f(x) + f(x+2) = 10 AA x in R , then

If f(x) is a polynomial function satisfying the condition f(x) .f((1)/(x)) = f(x) + f((1)/(x)) and f(2) = 9 then

A polynomial function f(x) satisfies the condition f(x)f(1/x)=f(x)+f(1/x) for all x inR , x!=0 . If f(3)=-26, then f(4)=

Let be a real function satisfying f(x)+f(y)=f((x+y)/(1-xy)) for all x ,y in R and xy ne1 . Then f(x) is

Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for all" x, y gt 0 . If f'(1) = 1, then f(x) is